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Preface

Graphical queries for the purpose of searching for pictorial information are of
growing interest in areas where pictures provide valuable information, including,
for instance, design, architecture, and engineering. Sketching graphical queries
is a natural way of revealing the visual appearance of objects one has in mind.
The problem which arises is identifying necessary shape properties of sketches,
that is, those properties which are not accidental but are necessary for specifying
a particular object property. This problem arises in particular because sketches
are imprecise, and often distorted by the artistic limitations of the sketcher.

From the theoretical point of view the concept of pictorial space applies. In
this context, new concepts are required, in particular for dealing with impre-
cise shape information in the plane. Taking into account constraints imposed
by pictorial space, a relation algebra of intersection-free relations is proposed,
which allows reasoning about qualitative line arrangements in the plane. The
theory is further developed for characterising polygons, by deriving a number of
qualitative properties which aid in describing polygons qualitatively. Applying
this theory, only line arrangements which are both readily sketched and easily
perceivable are considered to be different. The notion of positional-contrast is
introduced, which points out that the particular arrangements of line segments,
i.e. their positions relative to each other, provide an expressive means of char-
acterising necessary shape properties. The method developed in this work is
applied in using graphical queries to search for historical objects. Specifying
objects graphically, it is shown that the new method is capable of dealing with
imprecise sketches by describing necessary shape properties using qualitative
line arrangements, i.e. by taking into account positional-contrast.

Overall, the investigations which are carried out in this work pertain to the
field of knowledge representation in artificial intelligence. The representation
developed here sticks to ideas developed in the field of qualitative spatial rea-
soning — one of its principal goals being the representation of commonsense
knowledge about the physical world. As is common practice in this field, knowl-
edge about the domain in hand is made explicit in order to arrive at efficient
reasoning methods. Here, we confine ourselves to a representation of shape in-
formation and make explicit knowledge about our object of research, namely
about imprecise shape information in picture space.
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Chapter 1

Sketches

Pictorial information is frequently used as a means of depicting both spatial and
non-spatial knowledge:
1. designers develop new ideas by making sketches;
2. architects, city planners, and landscapers outline ground plans;
3. cartographers construct maps of geographic space;
4. engineers use graphical languages for modelling concepts and processes;
5. scientists visualise their experiments and observations;
6. several occupational groups make use of image databases.

The considerable increase in information available to us, especially pictorial
information, poses a problem: how do we find one particular document among a
vast number? An especially complex sub-problem pertains to freehand sketches,
as in the cases mentioned above. A city planner may be interested in particular
configurations of geographical objects, drawing them and comparing the draw-
ings with maps. Designers gather a great many sketches over the years, and
they are sometimes interested in finding sketches which have been drawn in the
past. Both city planners and designers would benefit from a system which can
automatically search for documents which are similar to a query sketch. Indeed,
digitised recordings in all sorts of areas are taken for granted today and have
sometimes even become an indispensable source, for example, in archaeology,
history, and the art trade. The search for particular objects is becoming com-
monplace and requires sophisticated techniques which cope with queries the user
specifies graphically in order to express the visual appearance of objects which
are difficult or impossible to specify verbally. Figure 1.1 shows the sketch of an
object with specific properties and an image which contains an object similar
to that sketch. Some of these properties may be specifiable in language but our
vocabulary is both ambiguous and limited — language cannot keep pace with
drawings.

Freehand sketches are different from photos or precise graphics, because
they convey objects only schematically, and we have to distinguish carefully
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Figure 1.1: A sketch and an object with some similarities to the sketch

those properties which have been drawn intentionally from those which are
accidental. There is little chance that two sketches which depict the same idea
will be equal from a geometrical point of view, just as there is little chance
that an imprecise sketch will equal geometrically a precise picture of a similar
object (see Figure 1.1). Therefore, it is crucial to determine those characteristics
which conceptually equal sketches have in common, i.e. shape information which
has been drawn intentionally. Intentional shape properties are those which
are necessary in order to specify an object, whereas accidental properties are
unimportant for comparison purposes or even misleading. It is the aim of the
current investigation to distinguish necessary from accidental shape properties,
and to compare sketched objects by means of non-accidental shape properties.

We will get a first idea of how to approach this difficult topic by looking at the
omnipresence of shape information in general, and especially at the importance
of shape information in drawings. Discussing the special character of sketches,
we will identify some problems which will allow us to state our objectives more
precisely. These objectives will help us to deal with methodological issues.

1.1 Necessary versus accidental properties

In several areas shapes have been identified as an important and quite challeng-
ing issue, among others, in perception and art (Arnheim, 1978), design (Itten,
1963), computer science (Marr, 1982), and neurology (DiCarlo & Maunsell,
2000); from his psychological point of view Palmer (1999) emphasises the im-
portance of shape information:

Of all the properties we perceive about objects, shape is probably the
most important. Its significance derives from the fact that it is the
most informative visible property in the following sense: Shape allows
a perceiver to predict more facts about an object than any other property.
Suppose, for example, you knew the color of an object but nothing else.
What could you predict from the knowledge that it was, say, a certain
shade of red? Most likely, almost nothing. But suppose you knew its
shape and nothing else. From knowledge that it was the shape of, say,
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an apple, you would be able to predict a great deal about it, what it
is used for, how it might taste, where it might be found, and so forth.
In this sense, at least, shape is the single most significant property we
perceive about objects.

We are accustomed to using shapes not only to predict facts about objects,
but also simply to distinguish objects by means of their shapes; we use them
to navigate around diversely formed objects, and to grasp, carry, and put away
different objects. In language we use various adjectives which describe shape
properties, such as thin, elongated, round, etc. Sometimes we even reason with
the aid of shapes, for example, when planning a route which we have to follow.
In short, our thoughts and actions are closely bound to shape.

Here we are especially interested in pictorial information, and we are look-
ing for the distinctions that we make when dealing with shape information in
sketches. Obviously, we are easily able to distinguish different shapes — for
example, the letters of the present text, and even the letters of thousands of
different handwriting styles. We want to investigate what the different spatial
structures are which can be distinguished so effortlessly, and which are impor-
tant in categorising different kinds of shapes.

Figure 1.2: Drawing of a woman after a painting by Pablo Picasso: War and
Peace (1952), Picasso Museum of Barcelona, Spain

The importance of shape information in drawings is a matter of particular
interest for us. Artists, and especially caricaturists, are able to convey single
objects or even complex scenes by merely drawing a few lines. The situation is
different for coloured pictures. Colour, light, shadow, and everything that we
see when observing natural scenes are helpful, even necessary, in categorising
objects. But the richness of colour information does not function without shape,
and actually such information induces us to see shapes. This may be the reason
why we are able effortlessly to categorise the objects in a sketch which is made
up simply of black lines on a white piece of paper, i.e. which is made up only of
shape information, like the face in Figure 1.2. Such shapes sometimes contain
only a few lines, so that we are faced with exceedingly stylised shapes which are
confined to a minimum of spatial information — yet they are precise enough
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for us to categorise them. Obviously, some kinds of relationships in caricatures
and stylised drawings are particularly relevant, so that our recognition abilities
do not suffer from a lack of information in correctly categorising objects. These
relationships can distinguish even categories of objects which would be highly
complex in a naturalistic, non-stylised depiction, such as faces (as demonstrated
above), or animals. An example of the latter is provided by Picasso’s drawings
of a bull at different levels of abstraction in Figure 1.3.

Here, we are not interested in recognising object categories by shape infor-
mation, but in comparing images using shapes. We claim that the shape of
any sketched object provides spatial structures which are useful in finding other
images containing similarly shaped objects. These objects may actually belong
to the same category as the query object, but they may also belong to other
categories which just show similar spatial structures. Horses or dogs may dis-
play similar spatial structures to the bull depicted at the most abstract level in
Figure 1.3. The specific properties of the bull get lost in an abstract depiction,
but abstract levels are still good at pointing out spatial structures such as the
four legs, the tail, and the approximate size and shape of the body. These spa-
tial structures are necessary in order to determine some category. By contrast,
specific properties supplement the necessary spatial structures in order to depict
a particular object which is an instance of that category; the top-left bull, for
example, looks less fierce than the bull to its right. The change in the depiction
of the bull from a precise instance with a lot of specific properties to a depiction
made up only of spatially necessary information is illustrated step by step in
Figure 1.3.

Figure 1.3: Drawings of a bull after paintings by Pablo Picasso: Le Taureau
(1945/1946), The Museum of Modern Arts, New York, USA
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Shape information, it follows, can be divided up into necessary relations be-
tween spatial structures that make up some category, and supplementary prop-
erties which vary in some details but maintain the overall appearance. This dis-
tinction between necessary and supplementary spatial structures corresponds
to the distinction made at the beginning between intentional and accidental
properties. Necessary properties are both intended and essential to categorising
the drawing. Supplementary properties are inessential; drawn by mistake, or
for decorative purposes, or to characterise a specific object instance. Which
shape properties are drawn intentionally can be investigated from a psycholog-
ical point of view. Such investigations need concepts which show what kinds of
shape properties exist. We shall analyse the spectrum of shape properties and
investigate how spatially necessary information can be characterised. That is,
we shall investigate from the point of view of information theory what kinds of
geometrical constraints apply at different levels of spatial precision in pictures,
and we shall identify a number of distinctive features, all of which are candi-
dates for being spatially necessary properties in sketches. Thus, we are faced
with the problem of distinguishing two kinds of shape feature: necessary versus
accidental properties, the former being crucial for comparing sketches.

Problem: Sketches comprise necessary and accidental properties which
need to be distinguished.

To make our point clear, we shall give an example. Someone is looking for
specific objects in an image database. He has some specific characteristics in
mind, which are satisfied by the objects he is looking for. Instead of studying
the whole image database, which is irksome and will take a long time, he would
like to sketch the desired objects. These sketches should then serve as graphical
queries for a search engine for images.

The sketched objects are imprecise, i.e. shapes, positions, orientations, and
sizes are indeterminate; they are accidentally drawn the way they are. One
could imagine arbitrarily many different sketches, similar or even quite dissimilar
to those shown in Figure 1.4, each one representing the same idea. What is
necessary is the overall structure of the lines representing differently shaped
objects, the left one being an ellipsoid which points upward and the other one
being wide. The one on the right hand side has some bumps at the bottom,
the left one not. The rough location of the stalks at the top matters, and
probably that one points (fairly) straight upwards while the other one is bent.
The determination of these necessary qualities is crucial.

1.2 Perceptually aided distinctions

We will get down to the problem of shape in sketches in the following way. A
great deal of work has been based on metrical shape descriptions, which all
have in common that they over-determine the properties of shapes in the fol-
lowing way. Given any sketch, metrical shape descriptions describe precisely
the instance at hand, rather than the category to which that instance belongs.
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Figure 1.4: Two sketched query objects

This works well whenever there is no big difference between an instance and
its category. But this does not apply to sketches, which will often be very dif-
ferent, imprecise drawings. Moreover, metrical shape descriptions reduce shape
information to an absolute scale rather than directly addressing the qualities of
a given sketch which characterise the category to which it belongs. A metri-
cal representation can even be misleading, since it describes everything equally
precisely including inessential details which may have been drawn by mistake.
With a metrical representation, accidental properties have to be separated from
non-accidental properties, which is quite a difficult procedure when all prop-
erties, accidental and non-accidental, have been represented equally precisely.
Therefore, we shall focus on properties which are not based on metrical infor-
mation, but which are distinguishable using perceptual systems which have no
access to any metrical information. Instead of metrical distinctions, only some
perceivable distinctions matter. But what do we mean exactly by perceivable
distinctions? What kinds of such distinctions exist?

Let us, for example, consider the distinction between acute and obtuse an-
gles: this distinction is easily perceivable, even when the angles are presented
separately. We can distinguish mentally as well as visually between angles which
are both acute, both obtuse, or different, because we are concerned with two
simple shape categories which we can recall from memory. By contrast, the dis-
tinction between two slightly different acute angles is not so easily perceivable,
and we have difficulties in imagining them. Mentally they melt down into one
single acute angle, as if only one kind of acute angle existed. The reader is
asked to imagine two acute angles, differing by less than 10◦. How different do
they look? We have to arrange these similar angles in a special way in order to
distinguish them, for instance, by drawing them on top of each other, or next to
each other on a piece of paper. We refer to the former category of distinctions,
for example between acute and obtuse angles or between simple attributes such
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as round and angular, as mentally aided distinctions. Distinctions at this level
are mentally aided, because these distinctions can be imagined mentally. We re-
fer to the latter category of distinctions, for example between two similar acute
angles arranged so that a direct comparison shows their difference, as perceptu-
ally aided distinctions. Distinctions at this level are perceptually aided, because
they require comparison by perception to permit differentiation.

Perceptually aided distinctions are discussed by Freksa (1992b) who refers
to them as to qualitative knowledge:

”... qualitative knowledge is obtained by comparing features within the
object domain rather than by measuring them in terms of some arti-
ficial external scale. Thus, qualitative knowledge is relative knowledge
where the reference entity is a single value rather than a whole set
of categories. For example, if we compare two objects along a one-
dimensional criterion, say length, we can come up with three possi-
ble qualitative judgements: the first object can be shorter (<), equal
(=), or longer (>) in comparison with the second object. From a
representation-theoretical point of view, a major difference between the
two approaches is that measuring requires an intermediate domain in
which the scale is defined while comparisons may be performed directly
in the object domain.” (Freksa, 1992b)

Thus, according to Freksa, features can be either described using an external
scale or compared directly to each other. In the latter case two acute angles, for
instance, could be perceived, compared, and then judged as equal or unequal;
in this case we would be faced with a binary qualitative judgement. Since such
comparisons in an object domain can be made by means of perception alone,
we are talking here more precisely about perceptually aided comparisons and,
as a consequence, about perceptually aided distinctions. By contrast, we refer
to those distinctions that require artificial external scales or an intermediate
domain as metrically aided distinctions. For example, two acute angles could be
arranged in such a way that we could not perceive them as different; in order
to recognise the difference between them, an intermediate domain would be
required, such as a scale defining angles to two decimal places. While metrically
aided distinctions are objectively defined by an artificial scale, perceptually
aided and mentally aided distinctions are dependent on the skills of the natural
perceptual system which makes a judgement. Images are good at providing the
means for perceptually aided distinctions. Objects drawn on a sheet of paper
can be directly compared by perception without requiring external scales, but
still allow finer distinctions than can be mentally imagined. This is actually
the reason why sketches are made: they provide means for representing the
richness of objects and ideas visually, where mental capacities are more limited.
It follows that sketches are closely related to perceptually aided distinctions.
We will show later on how some simple perceptually aided or mentally aided
distinctions allow us to compose a vast number of different shapes. As these
distinctions are perceptually more salient than metrically aided distinctions they
form a possible means of comparing sketches:
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Thesis: Necessary properties can be described by perceptually aided
and mentally aided distinctions. By contrast, accidental properties are
in most instances only distinguishable by metrically aided distinctions.

1.3 Methodological notes

Our object of investigation concerns pictorial information, and we want to in-
vestigate how a subclass of images, namely sketches, can be characterised for
comparison purposes. To this end, our work is related to the field of knowledge
representation in artificial intelligence; more precisely, to spatial representations,
since we want to represent shape information in sketches. Furthermore, we de-
fine reasoning mechanisms in accordance with reasoning procedures devised in
the field of qualitative spatial reasoning for the purpose of comparisons. In this
context, we are concerned with both the exploitation of well-structured domains
of spatial relations in images, and the exploitation of their algebraic properties.

Epistemological issues are confined to the assumption that the three-level
class distinction mentioned in the previous section provides a plausible basis
for dealing with different kinds of distinctions when comparing sketches. In
establishing our objectives it has to be taken into consideration that we are not
concerned with the processing of visually sensory information in order to obtain
shape information. This is the concern of image processing, and of the biology
and psychology of perception. Rather, the subject is how shape information
can be represented, and how to reason about shapes using such representations.
From this perspective, the present work mainly proposes an ontological basis
for pictorial information in sketches.

The results of the present work can be put into a larger methodological
context. One result will be a representation of shape information in sketches
that provides a source for studies about concepts of intentional shape prop-
erties in sketches. It is a matter for cognitive studies to decide which of our
geometrically-driven distinctions are actually intentional from a psychological
point of view. Giving a formal theory of spatial concepts, we provide a set
of spatial primitives and relations which form a basis for experiments. In this
way, one removes the subjective element which is always present when selecting
arbitrary spatial concepts for designing an empirical experiment about percep-
tion or sketching. Therefore, our approach exemplifies how information science
yields computationally sound methods which may be used to serve the needs of
the empirical sciences — one possible way for interdisciplinary collaboration to
work.

1.4 Overview

First, the role of shape information in sketches is described, especially its impre-
cise character in this area. A number of sketching systems are reviewed, and we
conclude that current approaches are too specific for our purposes. Qualitative
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spatial approaches are then surveyed, and are found to form an encouraging ba-
sis for sketch comparisons. A classification of spatial relations is used from which
we learn that existent qualitative representations lack appropriate concepts to
characterise pictorial information, especially shape information in sketches.

Our own representation is introduced in the third chapter. This approach is
motivated by the problems which we have identified in the previous chapter; it
facilitates the representation of shape information in images and reasoning about
shape relations. The fourth chapter is devoted to polygons, which appropriately
approximate shapes for the purpose of qualitative descriptions. Local and global
shape properties are introduced and discussed.

Next, we show how we fill the gap which has been identified in the review of
existing qualitative representations. It is shown how it is possible to deal with
shape information when spatially querying for pictures, particularly in order to
solve the problem of comparing linear objects in sketches.

We discuss how our approach can be integrated into existing geometrical rep-
resentations which are complemented by our new one. The notion of positional-
contrast is introduced, which characterises the new approach in the context of
sketch comparisons. That is, we provide a qualitative spatial representation
which characterises perceptually aided distinctions by positional-contrast and
which forms a basis for distinctions in pictorial space in general.



Chapter 2

The imprecision of sketches

In the first chapter, we learned that sketches raise the problem of distinguishing
necessary from accidental properties, necessary properties being crucial for the
purpose of sketch comparisons. In our thesis we propose to recognise them us-
ing perceptually or mentally aided distinctions. The first step in achieving this
is to get a general idea of what representations are based on such distinctions.
Several representations of perceptually aided spatial relations have been pro-
posed in the field of qualitative spatial reasoning. But before we come to those
representations we need to work out what is relevant when comparing sketches.
It is primarily the imprecision of sketches that makes them difficult to handle.
Hence, it is helpful to provide a framework for distinguishing different levels of
spatial precision. We are then able to figure out where present approaches lack
appropriate concepts for dealing with imprecise shape information such as that
found in sketches.

2.1 Characterising sketches

Sketches are primarily made up of shape information. Therefore, we have to
clarify precisely what we mean by shape. The importance of shapes in sketches
is then discussed. After that we will show that present systems operate on
shapes in a rather constrained way. This is due to the inherent imprecision of
sketches, as we shall see when studying the literature about peoples’ ability to
deal with spatial information in memory and sketches.

2.1.1 Shapes in sketches

In the context of the present work, by shape we refer to the way in which parts
are put together in order to make up an object, i.e. an object has a more or
less complex intrinsic structure which we refer to as its shape. The arrangement
of a number of disconnected objects form a pattern. In the simplest case a
shape is a closed simply connected region, but sometimes a shape consists of a
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more complex structure which could be regarded as a pattern of disconnected
parts contained within an object. However, we are always able to outline the
shape’s boundary, at least roughly. The boundary can be defined as the object’s
exterior, i.e. something that connects the object with its surroundings. Hence,
the boundary is particularly important since it defines how an object presents
itself to its surroundings, that is, how it is perceived and how it relates to other
objects. We refer to the shape of the boundary as the contour of the object.

While colour, texture, or different painting modalities may sometimes be
used, many sketches are mainly comprised of linear features drawn by pen or
pencil. Among other things, in geography such linear features correspond to
objects like paths, roads, rivers, borders, or coast lines; for an urban planner,
such linear entities may represent roads, plots of land, and parks or their respec-
tive boundaries; a designer may draw the outline of some objects, with some
details which make up a pattern characteristic of that object. We focus on linear
entities since non-linear entities such as regions can be described using linear
entities, especially in sketches — linear entities being the chief ingredients in
sketches, particularly when a sketch is drawn using a pen or pencil.

A sketch is made on a sheet of paper, and can be inspected at a glance, prob-
ably taking into account different spatial scales by looking at them at arm’s-
length as well as close-up. As a consequence, different spatial dimensions can
be considered on equal terms: position, orientation, size, and shape can be
inspected at different spatial scales, all these dimensions showing perceptually
aided distinctions. This is quite different from the most prominent applications
which deal with spatial information. In navigation, point-like abstractions of
landmarks are useful for orientation purposes, and in geographical information
systems cardinal directions between points matter, along with neighbourhood
relationships between regions. Information about shape and frequently even size
is unnecessary in these applications. But for our purposes shape and size be-
come important. Sketches belong to the domain of pictures which have another
ontological status, rather than that of navigation systems or geographical infor-
mation systems. Pictures can be regarded as similar to an extreme of the types
of information geographers deal with. Consider Tobler’s First Law of Geogra-
phy: Everything is related to everything else, but near things are more related
than those far apart (Tobler, 1970). In geography the considered objects, cities
for example, are far away, and it is sufficient to state that Bamberg is south of
Hamburg regardless of the size and shape of these cities. By contrast, everything
contained in a picture is so close to everything else that they relate in one way or
another. In particular, shape information becomes important. We refer to the
domain of pictures as pictorial space, in contrast to other kinds of space distin-
guished in spatial reasoning (cf. Freundschuh & Egenhofer, 1997); vista space
is sometimes an appropriate view on problems in the context of navigation, as
is large scale space in the context of geographical information systems.

Pictorial space requires, in equal measure, information about position, ori-
entation, size, and shape, because pictorial space provides us simultaneously
with all these types of information, all of them together determining the special
character of a given sketch. Thus, sketches are a great challenge not only due
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to the need to distinguish between the necessary and accidental properties, but
also in terms of integrating different spatial dimensions. This holds in particular
when one is interested in describing not only single shapes but also the relations
between differently shaped (and differently sized) objects, and their relative po-
sitions and orientations. We have to take into account all these dimensions, and
the relationships between them. Additionally, sketches are made up of linear
entities, and we conclude that we have to describe shapes (with regard to the
mentioned spatial dimensions) using linear entities. Do linear entities actually
play such a decisive role in existing sketching systems?

2.1.2 Electronic sketching

Yes, they do. Existing electronic sketching systems predominantly use pens
as input devices, allowing the user to sketch objects using linear components.
These systems, are intended to provide user interfaces which feel as natural as
pencil and paper, but which also provide intelligent means for, among other
things, automatically recognising drawn objects. It is often argued that it is an
important property of sketches that they look informal (Gross, 1998), (Landay,
1998). When working out new ideas, people are inclined to sketch their thoughts
informally. Informal depictions invite modification and further brainstorming,
whereas precise graphics look neat and perfect, suggesting a finished design.
But transferring informal sketches to the computer, is often a complicated and
tedious process (Stahovich, 1998). The same holds for graphical queries in the
context of image databases. A sketched query should look informal, too. A
neat and perfect graphical query would suggest that the user has a perfectly
elaborated idea in mind. But frequently what the user pictures (and what he
knows about what he intends to find) is rather more coarse and vague than this.

Those aspects of the problem of intelligent user interfaces which bridge the
gap between informal sketches and neat graphics form the primary context
in which sketching is investigated in applied computer science and intelligent
systems. In this context, we are only interested in one aspect, namely how these
systems deal with shapes. For this purpose, let us first have a look at how these
systems bypass two of the most difficult problems in computer vision, namely
segmentation and object recognition. In the spatial query by sketch system of
(Egenhofer, 1997) the user has to select first the object category of the object he
intends to draw; examples are rivers, woods, or land parcels. By this means, the
problem of segregating and grouping elements is bypassed. After the user has
drawn the desired configuration, the system automatically translates that sketch
into a representation that can be processed against a geographic database.

By contrast to (Egenhofer, 1997), most systems, such as the one from (Al-
varado & Davis, 2001), release the user from selecting an object category first.
Such systems make use of heuristics about how people draw. For example, they
assume that people tend to draw all of one object before moving to a new one,
that is, they assume that consecutive drawn strokes are likely to belong to one
single object. As soon as a number of consecutive strokes fit the template of
a given shape category, that object is displayed differently coloured in order
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to indicate what has been recognised by the system. The user can then make
corrections directly if necessary.

(Alvarado & Davis, 2001) use templates of predefined shapes defined by
basic geometry, for instance, a circle template which matches if all the points
on a drawn stroke lie at roughly the same distance from the average coordinate
of that stroke. (Hammond & Davis, 2003) arranges these predefined shapes
in an inheritance hierarchy, complex shapes being made up of primitives, to
which point, path, line, Beziercurve, and spiral belong, all being derived from
an abstract concept shape that provides a number of components and proper-
ties, such as bounding-box, centre-point, width, and height. (Sezgin, Stahovich
& Davis, 2001) makes use of speed data to allow the detection of vertices not
only by curvature maxima but also by looking for points along drawn strokes
with minima of speed. In (Landay & Myers, 2001) four primitive components
can be recognised, namely rectangles, squiggly lines, straight lines, and ellipses
which combine to form seven basic widgets as well as combinations of these
in the context of user interface design. Moreover, such combinations are de-
scribed in terms of the spatial relationships which exist between them, that is,
whether components contain other components, whether a component is left,
right, above, or below another one, or whether a component is in a vertical or
horizontal sequence of any combination of components. (Hse, Shilman & New-
ton, 2004) fragment a variety of sketched symbols like squares, ovals, trapezoids,
or pentagons into simpler structures which are approximated by line segments
and elliptical arcs. This fragmentation can then be used for template matching
in order to recognise symbols. (Skubic, Blisard, Bailey & Matsakis, 2004) trans-
late sketched route maps into linguistic descriptions. Different objects as well as
the route are separated by delimiters during the sketching process. The relative
orientation between two objects is determined by the histogram of forces, as
introduced by (Matsakis & Wendling, 1999), and the orientation is discretised
into one of sixteen possible directions. The route is described from an egocen-
tric point of view taking into account the route’s changes in orientation and the
orientations of the drawn landmark objects.

Those approaches discussed so far optimise interaction naturalness at the
cost of tightly restricted domains. By contrast, (Ferguson & Forbus, 2002) can
be used in many different domains at the cost of reduced interaction naturalness.
They call a collection of strokes a glyph representing an entity or relationship,
and avoid object recognition either by selecting the interpretation of a glyph
explicitly from menus, or by identifying the glyph by spoken words which the
system attaches to the drawn glyph in a multimodal environment. The glyph
itself is not further analysed. Meaningful spatial relationships between glyph
symbols are expressed by arrows, for example, in course-of-action diagrams, in
biological sequences, or in structural descriptions. For this purpose, topological
relationships as described by RCC8 (Randell, Cui & Cohn, 1992) are used, as
well as some simple orientation relationships, such as left of, right of, above, and
below. We have seen that present approaches mainly treat shapes metrically,
with the exception of (Ferguson & Forbus, 2002) and (Skubic et al., 2004) who
use ordinal information in order to describe the relative orientation between
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objects. Besides orientation information (Landay & Myers, 2001) also use
simple topological relations, such as contains, and (Ferguson & Forbus, 2002)
make use of RCC8.

We come to the conclusion that electronic sketching systems do not address
the distinction of necessary and accidental properties. They do not even make
any clear distinction between the process of obtaining and representing shapes,
let alone attempt any reasoning procedures about such representations, partic-
ularly in order to deal with incomplete and imprecise shapes, which is quite
important, given that sketches are imprecise by nature. This imprecision is ei-
ther treated by confining sketching systems to small, well defined sets of shapes,
or it is left to the user to tell the system directly what he intended to draw. Is
there a way in which we can treat imprecision in sketches more generally?

2.1.3 The imprecision of sketches

What, in fact, do we mean by imprecision? In what sense are sketches impre-
cise? Imprecision is related to the question of what kinds of distinction become
more difficult (or impossible) as something gets more imprecise. In the context
of sketching, details of objects and the relationships between them are impre-
cise. On the other hand, there are at least some coarse object properties and
relationships which are necessary for any sketch to make sense. These distinc-
tions are related to what people memorise, what they are able to recall from
memory, and what they are able to sketch.

A number of investigations had been carried out concerning the kinds of
spatial knowledge people acquire about their environments and which they use
when asked to remember environments, describe a route, sketch a map, or make
judgments about locations, directions, and distances. These investigations have
brought forth much evidence that memory and judgment are systematically
distorted. For example, people sometimes make errors in judging the direction
from one city to another. Such errors are attributed to hierarchical represen-
tations of space. If people do not remember the absolute locations of cities,
they infer the relative locations of cities from the locations of their superset
states. Boundaries of regions are sometimes quite complex so the rough direc-
tion from a point in one state to a point in another is not always the same for
arbitrary pairs of points (Stevens & Coupe, 1978). Students were asked to
estimate distances between buildings in a city. These buildings were grouped
according to function, commercial or educational. Distances between buildings
belonging to different groups were overestimated relative to distances between
buildings of the same category (Hirtle & Jonides, 1985). Similarly, in another
experiment students were asked to estimate distances between cities. Distances
between nearby cities were overestimated relative to pairs of cities being far
away (Holyoak & Mah, 1982). Less well-known locations are described with re-
spect to more familiar ones, and people also seem to remember them that way.
In the same way, we normally describe situations from our own perspective
rather than from any other point of view (Couclelis, Golledge, Gale & Tobler,
1987). Remembering less well-known locations relative to landmarks induces
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asymmetric distance judgements. People judge distances from ordinary build-
ings to a landmark to be smaller than the distance the other way round (Sadalla,
Burroughs & Staplin, 1980). Nearly aligned locations tend to be grouped in
memory, and then remembered as more closely aligned than they actually are.
Similarly, locations remembered with respect to a frame of reference can lead
to rotation distortions. Students who had to place cutouts of South America
correctly placed it upright, while it actually appears to be tilted on one side in a
north-south east-west frame (Tversky, 1981). Irregular geographic features are
sometimes regularised. Parisians straighten out the Seine (Milgram & Jodelet,
1976), and Americans straighten out the Canadian border (Stevens & Coupe,
1978), (Tversky, 1992). Turns and angles are regularised to right angles (Byrne,
1979). Distances are judged longer when a route has barriers or detours (Cohen,
Baldwin & Sherman, 1978), when a route has more turns or nodes (Sadalla &
Magel, 1980), and when a route has more clutter (Thorndyke, 1981).

Besides this evidence about distortions in large scale space, perceptual psy-
chologists have accumulated evidence showing distortions in pictorial space. For
example, depending on the context, lines which are equal in length are judged to
be different in length, as shown by the Müller-Lyer illusion or Ponzo figure; ver-
tical lines are overestimated with regard to horizontal lines (Figure 2.1). Lines
may even be perceived where there are actually no lines in the stimulus, as in
the case of the Kanizsa triangle (cf. Gregory (1997)).

Figure 2.1: Visual illusions: variation of the Müller-Lyer illusion (left); Ponzo
figure (middle); horizontal-vertical illusion (right) — compare the grey lines

Many investigations concerning perceptual processes have been carried out,
but comparatively little is known about the sketching behaviour of humans.
Frequently, sketching is used in experiments in order to test the abilities of peo-
ple with brain lesions and other disabilities. For instance, humans who suffer
from shape-agnosticism are not able to draw a simple shape such as the shape
of the letter S (Goldenberg, 1998). Instead, only fragments of the shape are
drawn. People who suffer from other diseases show in their drawings particu-
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lar distortions and incomplete shapes. Studies involving blind people who are
able to draw by making raised-line drawings are quite exciting, suggesting that
the development of drawing in blind and sighted children may be similar be-
cause haptics provides access to many of the same spatial principles as vision
(Kennedy, 2003).

There are also various studies which show characteristic distortions and lim-
itations of people who draw something and who do not suffer from specific dis-
abilities. Many people are unable to match the apparent directions of objects
in a perspective picture of a scene, even in simple copying tasks (Willats, 1997).
Inconsistency between different ways of showing depth is the norm in drawings
by children and adults (Milbrath, 1998), and inconsistencies between overlaps
and possible projective schemes also occur(see (Willats, 1997) and (Landerer,
2000)). Additionally, (Tversky, Zacks, Lee & Heiser, 2000) demonstrated that
people use small sets of schematic figures to convey certain context specific con-
cepts: in sketch maps, blobs, straight lines, curved lines, and crosses are used
systematically to convey information about geographical features; in graphs,
bars indicate discrete comparisons while lines indicate trends; in mechanical
diagrams, arrows signify order of functional operations.

The method known as serial reproduction is mainly used in the linguistic
analysis of text understanding (Stadler & Wildgen, 1987) but has also been
applied in the redrawing of simple pictures (Bartlett, 1932). Especially, there
are a number of studies in the context of dot displacements in which a piece of
paper with a single dot on it is exposed for a short time (less than one second) to
a subject who, after some seconds, has to reproduce the localisation of the dot
on another piece of paper. This reproduction is then shown to another subject
who is given the same task. The result is presented to the next subject, and
so on. The superposition of the reproductions shows a characteristic wandering
of the point which seems to be determined by the shape of the paper used.
For example, taking a DIN A4 paper the point wanders from the middle of the
paper, where the dot is placed at the beginning, to one of the corners of the
sheet of paper (Stadler, Richter & Pfaff, 1991). Regularities of the processes
which are shown by such experiments are interpreted in Gestalt psychological
terms as an effect of the tendency towards Prägnanz. Distortions are shown
when reproducing something by drawing, and these distortions are very similar
even for different subjects (Stadler et al., 1991).

We have learned that human beings distort spatial information in memory
as well as with regard to pictorial space. From this, it follows that sketched
ideas which have been recalled from memory are imprecise, although needless
to say additional imprecision is typically introduced in the sketching, since most
people do not sketch perfectly. Therefore, precise measurements and precise
comparisons of sketches are not meaningful. But the previous evidence also
shows that humans tend to distort spatial information in certain ways, which
are independent of subject. For this reason, it is meaningful to compare sketches
at a coarse granularity level of spatial information where subject-independent
tendencies are valid. In the following we shall see how it is possible to obtain
such a coarse granularity level.
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2.1.4 Straightening away imprecision

Having studied perceptual processes from the point of view of information theory
Attneave (1954) came to the conclusion that our perceptual systems are con-
fronted with much redundancy. He proposed a technique for obtaining coarser
shape descriptions which are less redundant, but which nevertheless maintain
perceptual distinctions. This technique could be conceived as a means of reduc-
ing noisy information, or, as we referred to it before, reducing accidental shape
properties. It was devised by analysing the results of the following experiment.

Figure 2.2: Subjects attempted to approximate the closed figure with a pattern
of 10 dots. Radiating bars indicate the relative frequency with which various
portions of the outline were represented by dots chosen — Figure 2 in Attneave
(1954)

Eighty subjects were instructed to draw, for each of 16 outline shapes, a pat-
tern of 10 dots which would resemble the shape as closely as possible, and then
to indicate on the original outline the exact places which the dots represented.
A sample of the results is shown in Figure 2.2: radial bars indicate the relative
frequency with which dots were placed on each of the segments into which the
contour was divided for scoring purposes. It became clear that subjects show
a great deal of agreement in their abstractions of points best representing the
shape, and most of these points are taken from regions where the contour is
most different from a straight line, i.e. where local curvature maxima in the
form of concavities or convexities are. This conclusion was verified by detailed
comparisons of dot frequencies with measured curvatures on both the figure
shown and others. These results have recently been confirmed by (Norman,
Phillips & Ross, 2001).

As a consequence Attneave concluded that the most salient parts for the
perception of shapes (that is, the most informative perceptually) are the points
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of maximum curvature along an objects’s contour. Figure 2.3, usually referred
to as Attneave’s cat, was created (to back up his assertions) by taking the points
of maximal curvature from the contour of a cat, and then connecting them with
straight lines. The resulting figure is easily recognisable as depicting a cat, and
this suggests that an economical encoding of two-dimensional shapes could be
obtained from identifying the points of maximal curvature and connecting them
in this fashion. This is how polygons come into play.

Figure 2.3: Attneave’s cat, Fred Attneave (1954)

Attneave’s technique has been widely used, and, from the technical point
of view, polygons have the advantage that there are already many methods for
generating polygonal approximations. For instance, (Cordella & Vento, 2000)
reviewed almost one hundred papers in the field of computer vision, and found
that 58% of the reviewed systems applied thinning techniques and polygonal ap-
proximations to shapes. Polygonal approximation algorithms range from simple
ones, like (Douglas & Peucker, 1973), to more sophisticated algorithms (Horng
& Li, 2002) which aim to find optimal polygonal approximations. (Rosin, 2003)
even developed several measures to assess the stability of such algorithms.

Hence, coarser granularity levels of sketches can be obtained by approximat-
ing the linear curves of a sketch using polygons. This has the advantage that a
number of different granularity levels can be taken into account — at least one
of which should be appropriate depending on the imprecision in hand. Particu-
larly, we are not interested in taking into account the details of a drawing which
has been scrawled down with a shaky hand, and even a well trained artist is not
capable of drawing, for instance, a perfectly straight line or a perfect arc. The
polygonal approximation of an (inherently somewhat inaccurate) drawn figure,
forms an appropriate basis for comparing it with others since such a polygonal
approximation is restricted to depicting perceptually aided distinctions.

Regardless of exactly what can be drawn to what degree of accuracy by
human beings, we will now investigate what different levels of spatial precision
can be defined, before moving on to identify a level of spatial precision which
allows us to deal with imprecision in sketches more generally than those systems
which we have been reviewing so far. This level of spatial precision will then be
used for characterising polygons.
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2.2 Imprecise spatial information

We are able to compare sketches, when looking at them, even though they are
imprecise, as a result of the way we observe features and relationships among
them. In this section we intend to examine what types of features and relations
support meaningful comparisons of imprecise sketches. The previous sections
taught us that in the context of sketches meaningful comparisons are to be made
at coarse granularity levels, at which we are able to focus on perceptually aided
distinctions. Thus, we shall analyse representations in terms of their sensitivity
to imprecise spatial information, and we aim to identify a representation which
is both coarse enough to deal with accidental properties and fine enough to
represent all necessary shape features.

2.2.1 Levels of spatial precision

We shall classify spatial representations accordingly to their sensitivity to impre-
cise information, placing at the lowest level those representations which are most
sensitive, i.e. all conceivable transformations change the properties of shapes
which are represented at this level of spatial precision. By contrast, at the
most insensitive level many transformations can be applied to a shape without
changing those properties which are defined by a representation at this level.

Examples of representations which are quite insensitive to imprecision are
topological representations. Such representations distinguish, for instance, re-
gions having a hole from those having not a hole, or self-connected regions from
regions which are separated into multiple pieces, as well as relations between
regions, such as disconnected regions or overlapping regions. We refer to this
level as the level of topology. Topological distinctions are quite robust with
respect to imprecision since a region with a hole, for instance, remains a region
with a hole regardless of the appearance of either the hole or its surrounding
region.

In addition to the existence of topological features or relations one might
also consider the arrangement of elements. Examples of this include the linear
arrangement of three objects, one being exactly in between the other two, and
the cyclic ordering of points indicating time on a watch, along with orientation
information such as the four points of the compass. This level is referred to as
the level of ordinal information. Small changes of the positions of elements will
often not entail changes in the ordering of those elements, i.e. the level of ordinal
information is still quite robust. But it is less robust than the level of topology
since a change in the ordering of objects will not affect topology. Projections,
such as orthogonal projections or central projections, belong to this level of
spatial precision since they consider only the ordering of elements between the
original shape and the projected one. Therefore, we can also refer to this level
of spatial precision as the level of projections.

The next level is that of affine transformations. The concept of congruence is
a specific affine transformation. When we are looking at two congruent figures,
there are sides and angles that match up in each figure. These sides and angles
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are called corresponding sides and corresponding angles, and these correspond-
ing parts are also referred to as congruent. This means that corresponding sides
are equal in length and that corresponding angles are equal in degrees. That is,
congruent objects are exactly the same size and shape. From the point of view of
sketching it is certainly difficult to produce duplicates of an object. Rather than
taking sides of equal length, a weaker demand is that ratios of corresponding
sides have to be in proportion, as in the case of similarity mappings which define
another specific case of affine transformations. Architects and map-makers, for
instance, use such scale drawings — the maintenance of ratios being particularly
important in these fields. Reflections, translations, and dilations also belong to
this level of spatial precision since all these transformations maintain complete
shapes and change either only the positions and orientations of shapes, or else
only their size.

Finally, any representation which considers absolute values is exceedingly
sensitive. For example, taking positions of points using a Cartesian reference
system, arbitrarily small changes lead to changes of the recorded position. What
distinguishes this level is that comparisons are made with regard to some arti-
ficial external scale while at the first three levels objects or their properties are
compared directly with each other. Further levels are conceivable at which other
properties are considered important. But these four levels provide a framework
relative to which representations can be compared for the purpose of finding a
representation for imprecise sketches.

Specific transformations can be applied to any shape without changing it
with respect to each specific level, except at the absolute level, where every
transformation changes the shape and even the smallest irregularities or varia-
tions lead to differences between shapes. On the level of affine transformations,
in particular in the case of similarity mappings, shapes can be scaled up or down
without affecting their equality. But correct ratios are difficult to render when
sketching. Hence, the first two levels seem to be inappropriate for representing
sketches. At the ordinal level, i.e. the level of projections, distances can be also
changed. But the arrangement of elements and their respective orientations
are not allowed to change. The order of elements is definitely not difficult to
maintain, even in an imprecise sketch. As such, representations at this level are
probably useful for representing sketched objects. At the topological level, all
topological transformations can be applied to the shape. This allows quite large
changes, for instance, two closed regions are topologically equivalent even though
they may have very different shapes. Being robust against specific changes each
level can be described by a number of invariants which characterise that level.
Some of the invariants which apply at each level are shown in Table 2.1.

As an example, let us consider the rectangle on the left hand side of Figure
2.4. At each level different changes are applied to the rectangle, while maintain-
ing equality at this level. The absolute level does not allow any changes, or this
specific rectangle will be changed. At the level of affine transformations, (in par-
ticular considering similarity mappings), variations are generated by scaling the
rectangle up and down. At the ordinal (projection) level, the ordering of corners
is considered, and two corners can, for example, be related by directions, such
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Figure 2.4: Equality at different spatial levels



2.2. IMPRECISE SPATIAL INFORMATION 25

Table 2.1: Different levels of precision correspond to different sets of invariants

Level Invariants
Topology Ordering & Position & Ratio & Scale

Projections Position & Ratio & Scale
Affine mappings Position & Scale

Absolute mappings Nothing

as below or left of. At the topological level, any topological transformation can
be applied to the rectangle and, for example, any quadrilateral, triangle, and
circle are regarded as equivalent to it at this level. If every conceivable trans-
formation is allowed (slicing through a contour, for instance), the rectangle can
be distorted arbitrarily. The example demonstrates that at the topological level
(and even more at the unrestricted level) the similarity rapidly decreases. For
our purpose, the level of ordinal information seems to be the best candidate.
We shall verify this in the following paragraph by discussing how existing ap-
proaches to qualitative spatial representations fit into this hierarchy of spatial
precision. Moreover, at each level arbitrary variations in the resolution used are
possible. For example, at the ordinal level one could choose between a resolu-
tion of 90◦ and 180◦ angles for the purpose of describing directions, or at the
absolute level one could use an arbitrarily fine scale. Finally, we will have to
decide both the level of spatial precision and the accuracy to be used at this
level.

2.2.2 Qualitative spatial representations

How are the four levels of spatial precision we have defined related to shape
properties? Studying the literature about visual shape perception, we learn
that shape properties usually refer to general characteristics such as round ver-
sus angular, symmetric versus asymmetric, regular versus irregular, or simple
versus complex (cf. Palmer, 1999). Although such qualities are used in several
ways, these properties are quite general and only capable of coarsely classify-
ing different kinds of shape. Looking at the variety of shapes in nature, it is
amazing that we come up with only a few general characteristics. It is as if
we lack the right vocabulary to describe the great variety of shapes in nature
— there seems to be a large gap between perception and language. Therefore,
we are interested in investigating whether there are perceptually aided shape
characterisations other than those just mentioned.

Representations of spatial relations which are perceptually aided have been
proposed in the field of qualitative spatial reasoning. In contrast to the gen-
eral shape properties just mentioned, qualitative spatial reasoning approaches
are distinguished by representations on the basis of which sound mathematical
reasoning procedures are defined. Furthermore, the qualitative representations
usually define sets of jointly exhaustive and pairwise disjoint relations, describ-
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ing a particular dimension, such as directional information or topological rela-
tionships. A set of jointly exhaustive relations allow for all possibilities, i.e. no
possible relation within the considered dimension is left undefined, and a set
of pairwise disjoint relations avoids any ambiguities since exactly one relation
holds for a given arrangement of objects.

Concepts in the field of qualitative spatial reasoning are restricted to rather
small sets of relations representing distinctions important in the chosen context.
Accordingly, we have to take into account what kinds of distinction are impor-
tant in the context of imprecise sketches. Moreover, qualitative concepts are
often driven by easily perceived distinctions; as we have already learned per-
ceptual distinctions are important for the purpose of comparing sketches. Even
more important, unlike image processing and computational geometry, which
both deal in a highly precise way with spatial information, qualitative concepts
are especially well suited to coping with imprecise and incomplete information
— particularly important in the case of sketches. Therefore, it is worthwhile to
examine approaches which describe shapes using qualitative spatial representa-
tions.

A general overview of qualitative reasoning approaches is provided by Cohn
and Hazarika (2001). By contrast, we review those approaches with the em-
phasis being on what is relevant for characterising necessary shape properties
of sketches. Given the requirements we have established, only those approaches
which are related to shapes (and which are useful in properly deriving our own
approach later on) are reviewed. At the absolute level, precise measurements
are significant, that is, at this level we leave the domain of qualitative spatial
representations. On the assumption that crucial characteristics of sketches are
represented by qualitative spatial concepts, any approach at this level is outside
the scope of our interest. Having also identified in section 2.2.1 the level of
affine transformations as inadequate for the representation of sketches, the two
remaining levels are those of topology and ordinal information (or projections).
We will discuss representations at these levels in that order.

Egenhofer et al. (1991), Randell et al. (1992)

Topological relations for the purpose of spatial reasoning have been proposed
by Egenhofer et al. (1991) and by Randell et al. (1992). They define different
dyadic relations between extended regions. In their Region Connection Calculus
(RCC), Randell, Cui, and Cohn (1992) have chosen an axiomatic formalisation
based on the binary predicate C(x, y), which indicates whether two regions
x and y are connected or not. Egenhofer and Franzosa (1991) derived their
formalisation by considering the intersections of boundaries and interiors for
two regions. This approach is therefore called the 9-intersection calculus. Both
approaches identify topological relations between two regions, such as those
depicted in Figure 2.5.

Further relations are proposed by Egenhofer (1997) who takes the follow-
ing extensions to topological relations (which he refers to as detailed topological
relations, which are depicted in Figure 2.6) into account: the boundedness de-
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Figure 2.5: Eight topological relationships between two regions

scribes whether a one-dimensional boundary component shared by two regions
is between them or on the same side of both (Figure 2.6.e); the complement
relationship refers to a component which is next to either an open or closed
exterior (Figure 2.6.f); the dimension of components is zero-dimensional if two
regions intersect at a point or one-dimensional if they intersect along lines (Fig-
ure 2.6.b). Some of these detailed topological relations seem rather like ordinal
relations: The sequence of components along a regions’s boundary — such a
sequence actually describing the ordering of those components (Figure 2.6.a);
the type of component intersections distinguishing whether the boundary en-
ters and leaves the component intersection from the same part or from different
parts — again, this concerns the ordering of the objects’ components (Figure
2.6.c); the crossing direction describing whether the boundary component leads
into or out of the interior of the other region — which is obviously related to
orientation information (Figure 2.6.d). Furthermore, Egenhofer uses cardinal
directions which are defined by a bounding rectangle of a region partitioning
space into nine areas. It is then possible to describe the location of another
region in terms of the cardinal directions defined by the former region.

Especially interesting in the context of sketches is the description of rela-
tions between line segments. Egenhofer and Herring (1991) consider all possible
relationships between two lines defined by the 9-intersection calculus. Unfortu-
nately, intersection relations among arbitrarily curved lines are considered which
may have simple or quite complex shapes. For this reason, visually different line
relations fall into the same equivalence classes.

Topological distinctions are quite general. Primarily, these relations have
been proposed for relating geographical objects. Topological relations are in-
teresting in the context of sketching since they can readily be distinguished in
a drawing (see the different relations in Figure 2.5). In fact, an approach for
describing shapes at the topological level exists.

Cohn (1995)

(Cohn, 1995) proposes a topological approach which allows different concave
shapes to be distinguished. This approach uses two primitive notions: that
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Figure 2.6: Detailed topological relations from Egenhofer (1997)

of two regions connecting, and that of the convex hull of a region. Once one
takes the convex hull of a region, relationships between the shape itself and the
different components of the difference between the shape and its convex hull can
be described. The left hand side of Figure 2.7 shows an example. A refinement
to this technique exploits the idea of recursive shape description in order to
describe any non-convex component of the difference between the convex hull
and the shape, as demonstrated by the example on the right hand side of Figure
2.7.

This approach is capable of describing different kinds of concave shape, at
least coarsely. But different convex shapes, objects of different sizes, and pat-
terns consisting of a number of objects cannot be described using it. More
generally, no kind of topological shape description preserves angles, lengths,
or ratios. As such, shapes of the kinds depicted in Figure 2.8 are topologically
equivalent. This example shows that constraints imposed at the topological level
are too weak, even for characterising necessary shape properties in sketches —
distinctions at that level are easily made in sketches, but we shall see that there
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Figure 2.7: Left: A shape and its convex hull; Right: Hierarchical shape de-
scription — from Cohn (1995)

are further relations which are more precise than distinctions at the topological
level, which still can be sketched readily. The ordering of some objects along
a straight line, for example, is definitely as simple to preserve in drawings as
topological relations are.

At the level of ordinal information approaches describe relative directions or
the ordering of objects — two different ideas which are closely related (Schlieder,
1995b). However, they allow us to describe shapes more precisely than at the
topological level, which is probably the reason why there are more shape de-
scriptions at this level. Whereas mainly regions, or connected point sets, are
used at the topological level, at the level of ordinal information directions be-
come important. Relations involving directions can be defined for the most
simple entities, namely points. For this reason, most approaches at the level
of ordinal information are defined using points, abstracting away information
about size and shape (both being unimportant for various tasks in, for instance,
geographical information systems). We shall see later on how such approaches
form a useful basis on which to define shapes.
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Figure 2.8: Two topologically equivalent, but rather different-looking figures;
corresponding regions are labelled by the same letter
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Figure 2.9: Allen’s thirteen one-dimensional interval relations

Allen (1983), Freksa (1992)

Allen (1983) introduced a description of ordinal relations in one-dimension in
terms of time intervals. There are thirteen such interval relations on the one-
dimensional axis, which are depicted in Figure 3.2. Each relation can be defined
in terms of the relative position between the four endpoints of two intervals.
These interval relations are of particular interest to us since they are obviously
perceptually aided. We will therefore show below what generalisations of this
approach to two dimensions exist.

The interrelationships of Allen’s interval relations have been investigated
by Freksa (1992a), who arranges these relations in their neighbourhood graph.
In this graph two relations are connected if they can be transformed into each
other without meeting any other relation. Figure 2.10 shows the neighbourhood
graph. Depending on the types of deformation of intervals and their relations
allowed, different neighbourhood structures are obtained. If we fix three of the
four endpoints and allow the fourth to be moved we obtain the A-neighbour
relation. If we leave the length of intervals fixed and allow complete intervals
to be moved, we obtain the B-neighbour relation. If we leave the location of
intervals fixed and allow their lengths to vary, we obtain the C-neighbour rela-
tion. This concept of neighbourhoods is quite powerful, and allows to structure
the domain of several qualitative representations, even of topological relations,
with each neighbourhood structure defining an ordering of a set of relations.

Guesgen (1989), Hernandez (1992)

Guesgen (1989) was the first one who applied Allen’s approach to the spatial
domain. He argues that the definition of one-dimensional spatial relations is
straightforward since there is a direct isomorphism between structures of time
and structures of one-dimensional space. For the one-dimensional case Guesgen
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Figure 2.10: The thirteen Allen relations arranged in conceptual neighbourhood
structures. Left: A-Neighbours, Middle: B-Neighbours, Right: C-Neighbours

distinguishes eight possible relations between two objects O1 and O2, namely
O1 left of O2, O1 attached to O2, O1 overlapping O2, O1 inside O2, and their
converse relations. For more than one dimension, Guesgen treats each spatial
dimension independently in the same way as the one-dimensional case, with
different dimensions arranged orthogonally. As a consequence, only rectangular
objects which are aligned with the underlying absolute frame of reference can
be adequately represented.

Hernandez (1992) combines topological relations and orientation relations. A
point-like reference object determines eight orientation relations, and a primary
object is described with respect to that reference object. Figure 2.11 shows the
structure which integrates both topological relations and orientation relations
from the viewpoint of one reference object. The d corresponds to the topological
relation of the outmost ring, meaning disjoint; t describes relations at the
medial ring, meaning tangent; o means overlaps, c containment, i included,
i@b included − at − boarder, etc.; for instance, [d, l] means during − left and
[o, rf ] means overlaps−right−front. Both Guesgen and Hernandez base their
representation on a static reference system.

Freksa et al. (1992)

Instead of using an absolute frame of reference the approach of Freksa and Zim-
mermann (1992), (Freksa, 1992b), (Zimmermann & Freksa, 1996) is based on
an intrinsic reference system. Using their representation the position of a point
can be described with respect to two other points. These points determine an
orientation grid which partitions the plane into six different regions. For a point
being described with respect to this grid fifteen positions can be distinguished,
as shown in Figure 2.12. Such an intrinsic frame of reference is induced by two
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Figure 2.11: Structure integrating topological relations and orientation infor-
mation — from Hernandez (1992)

of the objects present in a scene. Therefore, the objects themselves determine
a context relative to which spatial relations among them can be described —
no artificial external reference frame is required. However, this approach was
devised in the context of navigation, and it defines reasoning mechanisms for
directional information between objects, rather than describing shapes.
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Figure 2.12: The two-dimensional orientation grid distinguishes fifteen positions

Having discussed some approaches which may aid in defining shapes, we
will now consider some approaches which explicitly define shapes at the ordinal
level.

Galton et al. (1999)

Similar to those sequences of components in (Egenhofer, 1997), Galton and
Meathrel (1999) characterise the outlines of objects by describing the sequence
of component parts. Each part belongs to a boundary type, such as linear,
inward pointing cusp, or outward pointing cusp. A grammar for analysing any
outline into its constituent components is given. In (Meathrel & Galton, 2001)
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they generalise their approach using a hierarchy of tokens incorporating distinct
kink tokens for inward and outward pointing angles and cusps which can be used
at different granularity levels. Each outline is described by a string of atomic
tokens. (Figure 2.13 shows an example.) This approach is confined to describing
outlines of objects: several objects forming a pattern are not considered.

Figure 2.13: The outline of a shape and the description of its boundary parts
— from Galton et al. (1999)

Jungert (1993)

An approach that is capable of determining various features of polygons, such
as local extreme points, the consideration of acute, obtuse, and right angles,
and the distinction between concave and convex shapes has been developed by
(Jungert, 1993). In comparison to symbolic projections which project points only
perpendicular to a given coordinate system, symbolic slope projections consider
projections which are determined by the slopes of edges for a given polygon. By
this means three vertices of two adjacent lines are projected down to the x-axis
along the slope of the first line and also perpendicular to this slope, to the y-
axis. The ordering of the three points with regard to the x-axis (and, separately
with regard to the y-axis) is used to calculate the nature of shape features.
For example, since the inside of the object is defined as being on the left when
traversing the contour, a left turn means that the object is convex and a right
turn that it is concave. (A straight line cannot occur, since only non-collinear
points of a polygonal contour are considered). Consequently, whenever the first
and second points come before the third point on the x-axis, the angle described
is convex. By considering further information about the ordering of the three
points in the slope projections to both the x- and y- axes, more characteristics
are obtained. This shows how ordinal information (related to the ordering of
points) and projections define the same level of spatial precision, as we men-
tioned earlier (compare Table 2.1). Likewise the previous approach, Jungert’s
approach considers only the description of single objects. Some examples are
shown in Figure 2.14.

A generalisation of Jungert’s slope projection is the permutation sequence.



34 CHAPTER 2. THE IMPRECISION OF SKETCHES

Figure 2.14: Some distinguishable polygons — from Jungert (1993)

The permutation sequence considers all different orthogonal projections of a
configuration of points. Schlieder (1995a) describes the generation of the per-
mutation sequence: and oriented line is chosen which is not orthogonal to any
line connecting two of the points in the current scene (the points of a polygon, for
example), and the orthogonal projection of all points onto this line determines
one permutation of the point configuration. By rotating the projection-line an-
ticlockwise the permutation will change as soon as the line passes through a
slope that is orthogonal to a line which connects two of the points. All the
different orthogonal projections, i.e. permutations, that will be found during a
360◦ rotation of the line make up the permutation sequence.

Schlieder (1996)

A qualitative concept for navigation is investigated by Schlieder (1993), which
is based on the ordering of landmarks. A landmark can lie on either side of
a line which is defined by two other landmarks, or it may lie directly on that
line. A number of such relationships can then be used to orient oneself. For this
purpose, any conceivable position can be defined by specifying the position of
every landmark relative to any two other landmarks. The black area in Figure
2.15 shows an example for a region which can be addressed by the four present
landmarks. As soon as one passes the line defined by two landmarks one will be
in another neighbouring region. Similarly, other regions, with different shapes,
can be defined by changing the landmarks’ positions.
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Figure 2.15: Polygonal regions described by configurations of landmarks — from
Schlieder (1996)

Rather than considering the relative positions of landmarks Schlieder (1996)
considers the relative positions of vertices of polygons. By this means, he derives
an approach for describing polygons using ordinal information. Distinguishing
the two sides of a line which is defined by two landmarks is the same as taking
the triangle orientation of three vertices. A triangle is defined by three points
in the oriented plane. Its orientation is defined as ”+” if the path of the three
points follows the mathematically positive orientation, ”0” if it is rectilinear, and
”-” if it follows the negative orientation. One could then consider all possible
sets of three points and their triangle orientation. But when we consider shapes
with n vertices, there are n

3 triangle orientations. Hence, for large n it is
inefficient to proceed in this way; frequently it will be sufficient to consider only
a subset of the possible point configurations. Figure 2.16 shows four similar
shapes, differing only slightly in the ordering of their vertices.

This approach is of particular interest since it is possible to use it to de-
scribe the relative positions of objects, i.e. patterns of objects, and also (and
equally well) the boundaries of single objects. Both single objects and patterns
of objects are based on the same principle, i.e. the ordering of points in the
plane. On the other hand, this description lacks means for dealing with length
information. For instance, it is not possible to distinguish a rectangle from a
square. Additionally, this representation is less precise than that of Jungert,
who allows us to distinguish, for example, a square from a rhombus (but only
considers single objects).

Linear entities

Linear entities are of particular interest to us, as we discovered when discussing
characteristics of sketches. Moreover, besides positional information and orien-
tation information, line segments implicitly encode the length dimension since
line segments are defined not only by their position and orientation but also
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Figure 2.16: Changing ordering information between vertices changes the un-
derlying shape — from Schlieder (1996)

by their length. Therefore, we shall have a look at those approaches which
explicitly deal with linear entities at coarse spatial levels.

In the same way that Egenhofer and Herring (1991) investigated linear en-
tities at the topological level, there have been some investigations into linear
entities at the ordinal level. By contrast to Egenhofer and Herring, these ap-
proaches are all based on straight line segments, rather than on arbitrarily
curved lines. Schlieder (1995b) offers an approach which describes the relative
orientation of two line segments. With the aid of the triangle orientation which
we have already seen applied for navigation purposes and to the description of
polygonal shapes, he produces a total of fourteen line arrangements. Using a
resolution of 180◦ this approach can be conceived as the most simple generalisa-
tion of Allen (1983) to two dimensions. Unfortunately, such a coarse resolution
does not allow for some distinctions which are obviously perceptually aided, as
shown in Figure 2.17.

Figure 2.17: These two bipartite line arrangements are not distinguishable using
the approach of Schlieder (1995b)

Moratz, Renz and Wolter (2000) specify 24 relations, which extend the
relation-set of Schlieder (1995b) by also considering the equality of endpoints.
Further relations are obtained by an extension where one endpoint of a line
segment can be precisely behind the other line segment, on that line segment,
or in front of it, leading to a final total of 69 different relations. Unfortunately,
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these still do not distinguish some line arrangements, such as those in Figure
2.18. In this example, it holds for all three cases that the start point and the
end point of B are on the right of A, and that the start point and the endpoint
of A are both on the left with respect to B. Using their notation, we obtain A
rrll B for all three cases. Only for the special case where A lies directly on the
line which is defined by B are the corresponding arrangements distinguishable.
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A B

�

�

A B

Figure 2.18: These three bipartite line arrangements are not distinguishable by
the dipole approach of Moratz et al. (2000) — each arrangement is characterised
by A rrll B

Renz (2001) confines himself to 26 relations which are equal to the 13 rela-
tions of (Allen, 1983), but he also considers their converse directions.

2.2.3 Summarising spatial representations

When discussing the importance of shapes in sketches we have learned that
we have (for linear entities) to take into account position, orientation, and size
simultaneously, as well as the relationships between them. We have exam-
ined existing qualitative spatial representations against these requirements and
found, as the summaries in the following tables show, that there is currently no
approach which satisfies all our requirements.

When discussing different approaches we learned that topological relations
are perceptually aided, but also that topological distinctions are too coarse.
Having identified the level of affine transformations, on the other hand, as being
too fine, only approaches at the level of ordinal information (projections) remain
(see Table 2.2).

Most qualitative representations, in particular those which are based on
points or regions (see Table 2.3) are capable of providing some means for de-
scribing patterns. By contrast, approaches which are based on linear entities
are confined to describing the shape of single objects ((Cohn, 1995), (Galton
& Meathrel, 1999), (Jungert, 1993)), and they all lack means for considering
size or respectively length information. Size and distance information is only
treated in theories which do not deal simultaneously with shapes, for example
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Table 2.2: QSR approaches and their spatial precision

Approach Topological Ordinal
Guesgen 1989 x

Egenhofer, Franzosa 1991 x
Egenhofer, Herring 1991 x

Randell et al. 1992 x
Freksa, Zimmermann 1992 x

Hernandez 1992 x x
Jungert 1993 x
Cohn 1995 x

Schlieder 1995, 1996 x
Egenhofer 1997 x x

Galton, Meathrel 1999 x
Moratz et al. 2000 x

Renz 2001 x

Table 2.3: QSR approaches and their basic entities

Approach Points Lines Regions Others
Guesgen 1989 x respective

rectangles
Egenhofer, Franzosa 1991 x
Egenhofer, Herring 1991 x x x

Randell et al. 1992 x
Freksa, Zimmermann 1992 x

Hernandez 1992 x x
Jungert 1993 x
Cohn 1995 x

Schlieder 1995, 1996 x x
Egenhofer 1997 x x

Galton, Meathrel 1999 x differently curved
primitives

Moratz et al. 2000 x
Renz 2001 x
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that of (Hernandez, Clementini & Di Felice, 1995). Distance information is es-
pecially important for dealing with patterns and objects with complex shapes.
(Schlieder, 1996) also lacks means for dealing with size and distance informa-
tion, but in contrast to the others his approach can readily be extended to deal
with patterns.

If we exclude approaches which function at the topological level, and those
which are not based on lines, what remains are those approaches which are capa-
ble of dealing with linear entities in shapes, namely (Schlieder, 1996), (Jungert,
1993), and (Galton & Meathrel, 1999); and those which deal with linear en-
tities in general, namely (Schlieder, 1995b), (Moratz et al., 2000), and (Renz,
2001). However, as demonstrated in section 2.2.2 (see Figs. 2.17 and 2.18)
these approaches do not consider all distinctions which are obviously percep-
tually aided. Confusingly, (Moratz et al., 2000) and (Renz, 2001) do consider
some distinctions which are not perceptually aided, since they distinguish po-
sitions and orientations which are precisely aligned. Above all, the complex
relationships between the position, orientation, and size dimensions have not so
far been addressed for handling imprecise shape information (and linear entities
in particular) in pictorial space.

2.3 Object of research

We have seen that sketches are imprecise, and that there are several reasons for
this. Before a sketch is made, one usually remembers or imagines the shape of
an object — but spatial information about shapes which have been recalled from
memory is frequently distorted, so are perceptions in general, and, of course,
peoples’ sketching skills are limited. Current sketching systems either avoid
comparing shapes completely, or else they are confined to small and simple ob-
ject domains. A broader area of theories for dealing with imprecision concerning
spatial information is provided in the field of qualitative spatial reasoning. It
is therefore worthwhile to investigate how well theories in this field cope with
imprecision in sketches.

Having done this in the last section, we conclude that existing qualitative
approaches lack means for representing position, orientation, and size (the fun-
damental dimensions for coping with shapes in the plane) simultaneously. In
order to characterise sketches we have to describe shapes. By contrast, the
two main application areas for qualitative spatial reasoning approaches do not
require shape information. In navigation tasks information about direction (ori-
entation) from one point to another is of primary interest, and in geographical
information systems either orientations between point like abstractions of ob-
jects or adjacency relationships between regions are important. This is the
reason why there is not yet any qualitative representation which is capable of
dealing with shapes in a comprehensive way. The question arises whether it may
prove necessary to fall back upon metrical descriptions since neither topological
relations nor ordinal relations are currently capable of extensively describing
imprecise shapes. To take up this challenge we will start by considering linear
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entities, which are the simplest objects capable of showing variations in all of
the fundamental dimensions of pictorial space, namely position, orientation, and
length.

We earlier identified linear entities as being an important (probably the most
important) ingredient in sketches. The significance of linear entities becomes
especially clear when considering any sketch (in particular of complex, non-
linear objects) made with a pencil. For instance, a region with a complex shape
will be made up of a linear curve. It seems logical to base a sketch representation
on linear entities, especially when using qualitative representations in order to
cope with imprecision, i.e. with the distinction between necessary and accidental
properties, and we shall therefore model the necessary distinctions of sketches
using qualitative arrangements of lines. This will require us to solve or avoid the
shortcomings of other approaches which are also based on lines. Especially, we
will need to find a way of making all those distinctions which are perceptually
aided. For this purpose, we will investigate how lines can be arranged in the
plane while considering perceptually aided distinctions similar to those made by
Allen (1983).



Part II

Theory



Chapter 3

Qualitative line
arrangements

In this chapter we will investigate line arrangements from a qualitative point of
view. The proposed representation and reasoning processes rely on those sort
of distinctions which are easily comprehensible by natural perceptual systems.
For instance, it will be possible to distinguish whether two lines are on the same
side with respect to another one, or whether they are on different sides — but
we will not be able to obtain their precise positions. From an information the-
ory point of view, possible arrangements of lines are systematically investigated,
making use of distinctions which are both easily perceivable and easily sketch-
able: left and right, back and front, during and contains. We shall learn that
such coarse classifications will nevertheless allow a vast number of distinctions
to be made, and finally arrive at a theory of line arrangements which is based
on a small set of relations between intervals within the plane. This theory forms
the basis for a qualitative geometry using which we will consider the qualitative
characterisation of polygons in the next chapter.

Intervals form the basis for the proposed qualitative representation. De-
pending on the context, they represent either distances between objects or ap-
proximations to a part of a shape, which we then refer to as lines. In the
following, the word lines is used to mean straight line segments rather than
arbitrarily curved lines. Lines are the most simple entities which encode both
orientation and length. Additionally, as soon as a line is placed somewhere in
the plane it occupies a location. We then find all fundamental dimensions which
are needed in order to describe shape information united in one single entity:
each line encodes information about position, orientation, and length, lines be-
ing the simplest entities which encode information about all these dimensions.
Indeed, without using external reference systems we need at least two lines in
order to determine position, orientation, and length of one line (relative to the
other one). In what follows, lines (or, more generally, intervals) will be shown to
be particularly useful entities, providing a basis for the description of pictorial



44 CHAPTER 3. QUALITATIVE LINE ARRANGEMENTS

information.
Any shape in the picture plane can be described in terms of the arrangement

of a number of lines. This holds in particular for sketches, in as much as their
rough structures can be adequately described by approximating them with a
number of lines. Hence, any sketch may be described by an arrangement of
lines, and we will introduce a representation that readily allows us to characterise
perceptual distinctions, providing a means for distinguishing between necessary
and accidental shape properties, these distinctions being based on what we refer
to as qualitative line arrangements.

3.1 Bipartite arrangements

The simplest arrangements are made up of two lines. In this section we devote
ourselves to these bipartite arrangements, and investigate how two lines can be
related according to (Gottfried, 2004a). For this purpose, we take a look at the
Allen relations (shown in the Figure 3.1) once more.
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Figure 3.1: Allen’s thirteen one-dimensional interval relations

These thirteen relations can be transformed into each other, either by chang-
ing the relative position of the intervals, for example, in order to transform before
into meets, or by changing their relative length, for example, in order to trans-
form during into equals. However, we are dealing with a two-dimensional image
plane. Objects within the plane have been thoroughly investigated on the basis
of Euclidean geometry, and we are accustomed to how things are described by
Euclidean geometry. Considering the possible ways in which one could arrange
intervals in the two-dimensional plane, one conclusion is self-evident. In contrast
to the one-dimensional case where it is only possible to displace intervals either
forwards or backwards, in two dimensions it is additionally possible to displace
intervals in the orthogonal direction; that is, sideways. This is illustrated in
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Figure 3.2.b. Each arbitrary displacement can then be constructed by a pair of
two displacements, one horizontal and one vertical displacement. Figure 3.2.c
shows horizontal and 3.2.b vertical displacements.
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Figure 3.2: Left: Allen’s thirteen one-dimensional interval relations; Right: Fur-
ther variations are possible in the two-dimensional plane

Figure 3.2.d shows yet another variation possible in the two-dimensional
plane. In the one-dimensional case it is not possible to rotate an interval (for
instance, around its midpoint or around an endpoint). But in two dimensions
this leads to additional variations connected to the orientation of intervals within
a range of 360◦. Finally, the length of intervals can be changed, as is already
possible in one dimension. By means of these types of transformation, every
conceivable arrangement of two intervals can be constructed, although we aim
to distinguish only those arrangements which are as easily distinguishable as the
Allen relations. For example, we want to distinguish between the two arrange-
ments on the right-hand side of Figure 3.3, but not between the pair on the
left.

The idea is that we will ultimately obtain a number of relations which are eas-
ily distinguishable by perception. There exist infinitely many different arrange-
ments of two intervals from a metrical point of view. Are there as many from
the perceptual point of view? Considering the one-dimensional case and the
example in Figure 3.3 it seems likely that there are many fewer qualitative
arrangements.

3.1.1 Reference system

In order to systematically analyse what kinds of arrangements are possible, it
is necessary to define a reference system that can differentiate between all the
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Figure 3.3: Two pairs of more or less equal bipartite arrangements

arrangements which we wish to distinguish. Taking the 13 Allen relations as
an example, such a reference system has to distinguish precisely those positions
which define each relation. As one interval can be regarded as a reference
interval relative to which the other interval is described, the reference system
we are looking for is defined in terms of an interval. The endpoints of this
interval define that reference system, as depicted in Figure 3.4.

x

1 2 3 4 5 

Figure 3.4: The one-dimensional reference system distinguishes five positions

The reference interval x in Figure 3.4 lies from point 2 to point 4. In one
dimension it determines altogether 5 different locations relative to which another
interval, the primary interval, can be described. Placing the endpoints of the
primary interval at every possible combination of these locations and discounting
the two possibilities that produce a point rather than a line, we obtain the 13
Allen relations.

As the orthogonal direction allows for those vertical displacements in Figure
3.2.b, an orthogonal dimension is introduced at locations which are again de-
termined by the endpoints of the reference interval. In this way, we obtain the
two-dimensional reference system in Figure 3.5. This reference system equals
that introduced by Christian Freksa and Kai Zimmermann to which they refer
to as the orientation grid ((Freksa & Zimmermann, 1992), (Freksa, 1992b),
(Zimmermann & Freksa, 1996)). While we are interested in describing the
relative position of two intervals, they use this system in order to describe the
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position of a point in relation to two other points, the latter two defining the
reference system. Fifteen positions can then be distinguished for the primary
point. As we shall see below, there are many more possibilities for describing
the position of the primary interval when using this reference system, since an
interval is defined by two points and the positions of both of these must be
considered simultaneously.
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Figure 3.5: The two-dimensional reference system distinguishes fifteen positions;
the reference interval has been drawn continuously — on the right hand side
it has been rotated by 90◦ so that the left and right of the reference system
corresponds to the left and right in the picture plane

Using the orientation grid we are able to systematically consider all conceiv-
able relations between intervals in two dimensions. For this purpose, we place
both endpoints of the primary interval successively at each of those 15 positions
depicted in Figure 3.5, yielding 152 = 225 arrangements which are shown in
Figure 3.6. Each such bipartite arrangement defines a relation between two in-
tervals, and we can assign any pair of metrically determined intervals uniquely
to one such relation. We refer to these relations as to bipartite arrangements,
and denote the set of these relations by BA. Note that the position of the
primary interval is completely determined with respect to the reference inter-
val without requiring any external reference system. This is in contrast to the
approach of (Schlieder, 1995b) who defines line segment relations on the basis
of an oriented plane. Using this approach, it is possible to decide for three
distinguishable points whether they are oriented clockwise or anticlockwise re-
garding the plane, and two line segments are characterised by four such triangle
orientations which describe the configuration of the endpoints of the two line
segments. The relations of BA do not require reference to any external system
but only that the two endpoints of the reference interval be distinguished.

In Figure 3.6 the reference interval is always the vertical line segment which
is oriented as shown by the first arrangement at the top-left. Its endpoints define
different locations around it, as shown on the right hand side of Figure 3.5. The
fifteen relations in one row in Figure 3.6 can be described as follows. Within each
row, the position of one endpoint of the primary interval is kept fixed, while the
other endpoint is placed in each position in turn, in the order defined in Figure
3.5. When the moving endpoint has visited all 15 positions, the fixed endpoint
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is moved one place clockwise for the start of the next row, and further rows are
constructed in the same way. Positions 15 and 13 in Figure 3.5 correspond to
the endpoints of the reference interval. Positions denoted by 1, 3, 5, 7, 9, 11,
and 14 lie on the orientation grid, and the remaining positions (2, 4, 6, 8, 10,
and 12) correspond to six different regions. A point lying in one of these regions
is said to be in general position, and all others are in singular position. Intervals
in singular position are depicted by bulky points in Figure 3.6. We denote the
position of the primary interval y with respect to the reference interval x by xy,
and it holds that

xy ∈ BA = {BA(i)|i = 1, 2, ..., 225} (3.1)

Table 3.1: Allen’s relations are a subset of BA; further symmetrical relations of
BA are not considered (for instance, 217 ≡ 105)

Allen BA
before 1

contains 7
meets 13

overlaps 14
is finished by 15

after 97
is overlapped by 104

is met by 105
is started by 187

starts 194
equals 195
during 209

finishes 210

A prominent subset of BA equals Allen’s time intervals. Actually, projecting
each of the 225 relations of BA orthogonally onto that line on which the reference
interval lies, each relation equals one of Allen’s time intervals. Only the positions
of the related line’s endpoints perpendicular to the reference line distinguishes
the two-dimensional from the one-dimensional case. These endpoints can be
placed on either side of the reference line. As is shown in Table 3.1, for the
thirteen Allen relations, A, it holds that A ⊂ BA.

Two related approaches define equivalence classes among the relations of
BA. Schlieder (1995b) obtains 14 line segment relations in general position and
63 when singular positions are included. The dipole relations of Moratz et al.
(2000) define a set of 24 and an extended set of 69 relations. As the relations of
both Schlieder and Moratz form equivalence classes containing several different
BA-relations they describe coarser grained sets of relations.
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Figure 3.6: There are 225 possible two-dimensional bipartite arrangements if
the two endpoints of the two intervals are distinguishable; the bulky points
denote singular positions of the endpoints of the primary interval which lie on
the reference system
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Regardless of whether all possible BA distinctions are made or only a sub-
set, the meaning of these relations are as follows. For any image, an interval
x is defined by a pair of points in R

2. By interval interpretations we mean
pairs of distinct real points in R

2 which metrically determine intervals, i.e. the
underlying domain of intervals is infinite. Given two interpreted intervals, x
and y, exactly one relation of BA holds for xy, and exactly one relation holds
for yx. Conversely, a formula xy = BA(i), i ∈ {1, 2, ..., 225} with the intervals
x and y is said to be satisfied by an interpretation if that interpretation re-
alises the relation BA(i) in R

2. The relations of BA subsume infinitely many
interpretations, and each relation of BA can be regarded as uninterpreted. We
call such uninterpreted relations qualitative, and any set of relations of BA is
called a qualitative line arrangement. We are now able to state our Thesis more
precisely:

Thesis: Perceptually aided and mentally aided distinctions are rep-
resented by qualitative line arrangements. Metrically aided distinc-
tions include different interpretations of one and the same qualitative
arrangement.

3.1.2 Position versus orientation

So far we have only taken into account positional relations. In addition to these
variations, the orientation of the primary interval can be changed, as illustrated
in Figure 3.2.d. In fact, orientation and positional information are interrelated.
Some relations which are defined solely on specific positions constrain possible
variations in orientation. BA(1), for example, allows only two orientation vari-
ations which differ by exactly 180◦, while Figure 3.7 shows that BA(171) allows
only orientation variations within a range of less than 90◦, whereas BA(17) can
be oriented arbitrarily, i.e. every orientation variation within a range from 0◦ to
360◦ is possible. This demonstrates that positional information and orientation
information are mutually dependent. This dependence can be stated more gen-
erally by clarifying how position and orientation as well as location and direction
are interrelated:

position

orientation
=

location

direction
(3.2)

An object has a position, i.e. it occupies a location, and it has an orientation,
i.e. it points into some direction. An oriented reference interval defines differ-
ent locations, as shown in Figure 3.8.a. The position of another interval, the
primary interval, can be described with respect to these locations. Similarly,
an oriented reference interval defines different directions, as shown in Figure
3.8.b. The orientation of the primary interval can be described with respect to
these directions. In the same way that the reference interval uses 90◦ angles
for partitioning the plane into sections that define different locations, different
directions are defined by partitioning the range of possible directions into 90◦

angles, as shown in Figure 3.8.b. In this Figure, eight distinguishable directions
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BA(171)

reference
interval

primary
intervals

















�
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BA(17)

reference
interval

primary
intervals�

�
�
�

Figure 3.7: Left: the orientation of the primary interval can be changed only
within a range of less than 90◦; Right: the primary interval can be oriented
arbitrarily

are denoted by the corresponding locations of Figure 3.8.a, showing the rela-
tionship between location (position) and direction (orientation). The reference
interval simultaneously determines possible locations and directions , so position
and orientation of the primary interval cannot be treated independently: the
orientation of the primary interval is related to its position, as each direction is
related to specific locations which are defined by the reference interval.

a b

1
3
2

4

5
678

9

10

11
12

13

14
15

�
� 	


��1
2

4

6
7

8

10

12

Figure 3.8: (a) The two-dimensional reference system distinguishes fifteen po-
sitions — the reference interval runs from point 13 to point 15; (b) as for the
locations different orientations are defined taking a resolution of 90◦ angles

Finally, there is the length of the intervals, which cannot be treated inde-
pendently of positional information either. For example, solely by changing the
length of the primary interval, BA(17) can be transformed into BA(27) and vice
versa. BA(1) can be arbitrarily lengthened in one direction without changing
the relation. By contrast, if it is extended in the other direction we will eventu-
ally obtain BA(13). Thus, all three dimensions (length, direction, and location)
are mutually dependent.

Considering variations in length, direction, and location of intervals, we can
readily distinguish a large number of different bipartite relations, and it is nec-
essary to ask ourselves whether all these distinctions are actually useful. From
the point of view of sketching in particular, a smaller number of distinctions
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is probably sufficient, as some relations (such as BA(2) and BA(17)) are diffi-
cult to distinguish in a sketch. Combining the positional relations of BA with
the orientation variations we obtain quite a large set of relations. There are
225 possible positional relations and 8 orientation variations, making a total of
225*8=1800 relations. Each such relation encodes simultaneously information
about position and orientation. Since many relations, such as BA(1) and BA(2),
allow only a subset of the orientation variations, there are ultimately more than
225 but fewer than 1800 relations. Comparing them with both Schlieder (1995)
and Moratz (2000) it can be seen that relations exist in BA that cannot be dis-
tinguished by either Schlieder or Moratz. The arrangements in Figure 3.9, for
example, although these arrangements are certainly simple to distinguish both
by perception and also when sketching them. On the other hand, we are always
able to distinguish by BA the relations identified by Schlieder1 and Moratz2.
Analysing the relations of BA more thoroughly in the next sections, we will
produce a clear and rather handy set of relations.

BA(175) BA(177)

Figure 3.9: These two bipartite line arrangements (both primary intervals point-
ing to direction 1 (see Figure 3.8)) can be distinguished by BA, but not by either
Schlieder (1995) or Moratz et al. (2000)

3.1.3 Omitting singularities and intersections

It is important to note that all these relations can be divided into two general
classes; those which involve singular positions and those which do not. Singular
positions concern precisely aligned intervals, and are therefore somewhat inap-
propriate when dealing qualitatively with objects, in particular when trying to
distinguish them in a sketch. Qualitative distinctions concern relations about
which we feel confident. Such relations represent coarse knowledge, implying
that small changes are negligible. But arbitrarily small changes to intervals in
singular position violate this property of qualitative relations. A relation in
singular position must not be changed even the smallest amount, or the relation

1Schlieder’s line segment relations in general position are represented by {BA(i)|i ∈
{217, 494, 4910, 211, 1114, 1674, 554, 5510, 16710, 11110, 1171, 1454, 14510, 1177}} - the top-
index indicating the orientation accordingly to Figure 3.8.

2D24 = {BA(i)|i ∈ {35, 494, 4910, 63, 83, 55, 27, 167, 139, 111, 131, 1454, 14510, 159, 191, 183,
163, 43, 219, 215, 135, 75, 223, 195}}

D69 = D24 ∪ {BA(i)|i ∈ {16110, 1138, 1132, 1614, 149, 166, 125, 153, 98, 199, 2, 52, 142, 12,
94, 16, 41, 48, 205, 59, 8112, 69, 812, 17, 11, 181, 196, 91, 211, 103, 97, 105, 104, 2097, 224, 208, 17,
13, 14, 7, 15, 187, 2091, 194, 202}}
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will no longer hold. In order to consider such positions in drawings, tools such
as rulers and set squares are needed, but rough sketches are made without such
tools. For this reason we must leave out relations including singular positions.
However, we do not simply exclude those relations but instead reassign them to
other relations. For a relation such as BA(2), this can be achieved by excluding
endpoints of the primary interval which lie in singular position (making BA(2)
into BA(17)). Relations which are entirely in singular position (like BA(1)) can
be reassigned by placing the endpoint of the primary interval in neighbouring
regions which enclose that singular position (in this case, BA(27)). Another
general and convenient way of dealing with singularities is discussed later.

There is a second issue to be addressed. We must not confuse the information
contained in an image with the interpretation of that image. In particular, this is
important when considering the overlap of objects. BA(55) provides an example.
Such an arrangement is normally interpreted as representing an intersection of
two intervals. But from the point of view of an image, at any location there
can only be information about one colour. Intersections or overlaps are not
realisable in the two-dimensional plane. Whatever we regard as intersections is
essentially the three-dimensional interpretation of what is actually flat pictorial
information. From this it follows that intersections like BA(55) can be excluded
at the level of basic pictorial relations. At more abstract levels, however, we may
be interested in representing intersections. For this purpose, we shall later show
how intersections can be represented by means of arrangements of intersection-
free relations.

Neither Schlieder nor Moratz make a distinction between singular relations
and general relations but treat them at the same representational level. The
same holds for intersections. We discuss in the next section what kinds of
arrangements remain when confining the set of basic relations to those which
are both in general position and free of intersections.

3.2 Disconnected arrangements

We now have a number of qualitative line arrangements describing different
forms of disconnection. Choosing two lines with a desired length, and using a
resolution which distinguishes 90◦ angles within the Euclidean plane, the lines
can be arranged in 125 different ways. The set of these relations is denoted by
BA8

23, indicating 23 different positional relations and 8 distinguishable orienta-
tion relations.

Figure 3.11 shows these relations arranged in their neighbourhood graph.
Both the reference interval and the primary interval are oriented, i.e. their end-
points are distinguishable (see relation Fl in Figure 3.11). The endpoints of the
reference interval are as depicted in Figure 3.8.a, with the eight possible ori-
entations of the primary interval arranged around each relation in Figure 3.11
as shown in 3.8.b. Two positional relations are connected if they can be trans-
formed into each other, by changing the position of one or both endpoints of
the primary interval without passing through any third relation. By contrast to
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BA125, Figure 3.12 shows the graph of BA113, which omits singular positions;
whereas BA113 can be appropriate for describing perceptual processes which
cannot unerringly detect singularities, the singularities in BA125 (such as FF

m)
can be useful for designing configurations, in which singular relations may be
useful. Further neighbourhood graphs are conceivable by taking into account
the orientation of the primary interval as well as its position. A minimised ver-
sion of the neighbourhood graph is depicted in Figure 3.10, distinguishing only
the different positional relations.

A mnemonic description, shown on the right hand side in Figure 3.10, al-
lows us to concisely indicate the various relations. These mnemonics aid in
comprehending their meaning. The identity relation is in the middle of the
neighbourhood graph. For two intervals the identity relation holds if the two
intervals are equal. Since each interval is uniquely defined in the picture plane
and no overlap between intervals is possible, no transformation is possible be-
tween the identity relation and any other relation. (Thus, there is no connection
to the identity relation in the neighbourhood graph.)

The relationship between position and orientation is again shown by the way
in which positional relations constrain possible orientation. Twelve of the 23
positional relations allow all orientation variations: two relations, Cl and Cr,
allow six different orientations, eight relations (FOml, FOmr, FCl, FCr, BCl,
BCr, BOml, and BOmr) allow only two orientations each, and the identity
relation allows exactly one orientation. The combination of the resolution (90◦

angles and six regions) and these dependencies between position and orientation
result in a final total of 125 distinguishable relations.
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interval relations
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Figure 3.11: The 125 relations of BA8
23
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Figure 3.12: The 113 general relations of BA8
23
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Any reasoning procedure must deal in some way with subsets of BA8
23. When

we know exactly which relation holds between objects we are concerned with a
subset containing only one element. But after a single inference step our knowl-
edge frequently becomes indeterminate, and this indeterminacy means that we
are concerned with subsets containing more than one relation. Where this is
the case, we must take into account all those relations which may hold. Some-
times our knowledge is completely indeterminate, and every relation in BA8

23

could hold. We can exclude relations if there are reasons why these relations
cannot hold in the given situation. Subsets of BA8

23 can be illustrated concisely
in iconic form; Figure 3.13 shows some examples — each icon is a minimised
depiction of the graph in Figure 3.10. Positional relations contained in a subset
are printed in black, and orientation relations can be specified for each posi-
tional relation separately. The identity relation can often be omitted from the
iconic depictions, increasing the clarity of the diagram.

PositionOrientation � � �� � � �� �� � � �� �� � � �� � �
{Fl, Fm}Fl

� � �� � � �� �� � � �� �� � � �� � �
{Fr}Bl

In these examples orientations are indeterminate

� � ��� ��� �� � ��� ��� ��� � �
{BOmr, BOr, Bm, Br} � � ��� ��� �� � ��� ��� ��� � �

{Fl, Fm, FOl, FOml, FCl, Cl}

� � ��� ��� �� � ��� ��� ��� � �
{Fr}� � ��� ��� �� � ��� ��� ��� � �

0 � � ��� ��� �� ����� ��� ��� � �
1 � � ��� ��� �� ����� ��� ��� � �

Id

Figure 3.13: Examples for the iconic depiction of sets of relations

3.2.1 N-partite arrangements

Nothing can be said about the position of a single line segment without external
reference. Once there is a second line to fulfil the role of the reference line,
the former line’s position can be determined, though only accordingly to that
reference line. But the more lines there are, the more accurately the position
of a line can be described, as a rule. The arrangement of lines also affects how
precisely the position of a line can be described. If, for instance, an arbitrarily
large number of lines are arranged in such a way that the primary line is in
the same relation to all reference lines, the position of the primary line cannot
be determined very accurately. By contrast, the more different relations there
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are between the reference lines and the primary line, the more accurately the
position of the primary line can be determined. Consider, for example, a regular
partitioning of the plane into a number of small squares, all the lines which form
these squares having the same length d. The shorter d is, the more precisely
the position of the primary line can be described. The regular partitioning of
the plane actually forms a metric with the minimal distance d. Thus reference
segments introduce a special context, and the position of a primary line can be
described with regard to this context, with each primary line being part of the
context for any other line segment. Thus, an arrangement of lines is described
in a self-referring way.

Any conceivable arrangement of n lines can be described by considering all
n
2 pairs of lines. To be more precise, there are n!

(n−2)! bipartite arrangements
since a relation of BA8

23 is generally not equal to its converse. In this way, each
arbitrarily complex pattern is put down to a number of bipartite arrangements,
and each bipartite arrangement is treated as equally important. By doing this,
we lose sight of those properties which can only be constituted by an arrange-
ment of more than two lines. Such a property, for instance, is the in-between
relation: one line is in-between two others. Sometimes two arrangements with
a different number of lines may even constitute the same property. A line may
be contained within a region which is made up of a number of other lines,
perhaps a region being formed by only three lines, or possibly a region made
up by an arrangement of many lines. These examples show that one bipartite
arrangement cannot necessarily be treated on a par with any other bipartite
arrangement. Instead it is important to identify those relations which together
act upon the same property — two lines being arranged such that a third line
can be put in-between them, or a number of lines being arranged to form the
boundary of a region; these lines are to distinguish from those lines which are
either inside or outside that region.

Two main approaches to investigating relationships involving more than two
lines have been proposed. (Schlieder, 1995b) uses neighbourhood graphs as
defined by (Freksa, 1992a) for describing changes in line segment relations. If
transformations are continuous in space and time it will not be possible to
produce an arbitrary sequence of line segment relations. In a continuous world
each relation can only be followed by certain other relations, that is, by its
conceptual neighbours. We defined this neighbourhood graph for the BA8

23-
relations in Figure 3.11 and in Figure 3.12. By contrast, (Moratz et al., 2000)
do not use a neighbourhood graph but instead define a relation algebra in order
to be able to reason about line segment relations. We will also define a relation
algebra with the relations of BA8

23 in the next section. It is then possible to
apply constraint based reasoning techniques to line arrangements in order, for
example, to test whether a particular set of BA8

23-relations gives a consistent
scenario.
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Figure 3.14: Example for the converse relation

3.2.2 A relation algebra on line arrangements

Considering (Ladkin & Maddux, 1994) a relation algebra is a nine-tuple:

A = (BA8
23,∪,∩,̄ , 0, 1, ◦,̆ , Id) (3.3)

where (BA8
23,∪,∩,̄ , 0, 1) is a Boolean algebra; BA8

23 is the universe, ∪ the union,
∩ the intersection,¯the complement, 0 is the empty relation, and 1 the universal
relation; ◦ is a binary operation called the composition, ˘ is a unary operation
called the converse, and Id ∈ BA8

23 is the identity relation. As the operations
coincide with the usual set-theoretic operations on the relations in BA8

23, and
since the universe is a set of binary relations, we obtain a proper relation algebra.

For any two binary relations R, S ∈ BA8
23, R ∩ S is the intersection of R

and S, R ∪ S is the union of R and S, R ◦ S is the composition of R and S, R̆
is the converse of R, and R is the complement of R. For intervals x, y, z ∈ R

2,
these operations are defined as:

R = {(x, y)|(x, y) /∈ R} (3.4)

R̆ = {(x, y)|(y, x) ∈ R} (3.5)

R ◦ S = {(x, z)|∃y : (x, y) ∈ R ∧ (y, z) ∈ S} (3.6)

R ∩ S = {(x, y)|(x, y) ∈ R ∧ (x, y) ∈ S} (3.7)

R ∪ S = {(x, y)|(x, y) ∈ R ∨ (x, y) ∈ S} (3.8)

In expressions without parentheses, the unary operations, i.e. converse and
complement, are to be computed first, followed by composition, intersection,
and union, in that order; repeated binary operations at the same priority level
are to be computed from left to right. The compositions and converse relations
are computed based on the semantics of the relations, and these two operations
will now be discussed further.

Identifying the converse of a relation is a particularly useful operation: if xy

describes y with respect to x then for the converse relation it holds that x̆y = yx.
Figs. 3.16 - 3.17 show the table of converse relations, Φ denoting the position
and φ the orientation. For instance, for the arrangement in Figure 3.14 it holds
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Figure 3.15: Example for the composition operation: given xy = FFl
m and yz =

Fm there exist six possible arrangements for xz

xΦ
y = � � ��� ��� �� � ��� ��� ��� � �

∧ xφ
y = �→ yΦ

x = � � ��� ��� �� � ��� ��� ��� � �
∧ yφ

x = � (3.9)

(first column, second row in Figure 3.16). Note that Figure 3.16 contains some
empty sets which denote impossible combinations of position and orientation.

Given xy and yz the relation xz can be looked up in the composition table
in which all possible transitivity relations are stored. Figs. 3.19 - 3.22 show the
composition table. For instance,

xy = � � ��� ��� �� � ��� ��� ��� � �
∧ yz = � � ��� ��� �� � ��� ��� ��� � ��

→ xz = � � ��� ��� �� � ��� ��� ��� � �
(3.10)

(second column, second row in the composition table in Figure 3.19). For the
composition, we write xz = xy ◦ yz. The resulting orientation of z with respect
to x is computed according to Figure 3.18. Figure 3.15 shows this situation.
Given xy = FFl

m and yz = Fm there exist six possible arrangements for xz,
namely {Fl, Fm, FOl, FOml, FCl, Cl}.

We shall now consider the composition operation more thoroughly. The
125 different basic relations of BA8

23 allow 1252 = 15625 compositions. The
orientation of yz is recorded as yφ

z , and its position as yΦ
z . yφ

z is irrelevant to the
deduction of the position of z with respect to x, since xφ

y , xΦ
y , and yΦ

z sufficiently
constrain the position of z in relation to x; and the orientation of z with respect
to x can be derived from the table in Figure 3.18. Hence different orientation
variations of yz can be pooled together in the composition table. Moreover,
we can omit the identity relation since it behaves neutrally with respect to
composition. Furthermore, all compositions with the empty relation are empty;
and all compositions with the universal relation result in the universal relation,
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Figure 3.16: Converse relations: given xy in the upper row, yx is derived de-
pending on the orientation of y with respect to x which determines the row; the
orientation and the change in orientation is given in the first column

except for the composition with the empty relation. As a consequence, there
are only 22 possible relations to be considered for yz, leading to 124∗ 22 = 2728
entries in the composition table. Exploiting the available symmetries we can
reduce the composition table further, to 31 ∗ 22 = 682 entries. We shall refer to
the composition table as CT . The following algorithm shows the computation
of the 2728 compositions.

get-xz (xy, yz)
if xy ∈ CT

return CT (xy, yz)
else if (xφ

y )−1 ∈ CT
return CT ((xφ

y )−1, (yΦ
z )−1)

else
return get-xz(x−1

y , yz)−1

CT (xy, yz) may simply be looked up in the composition table. (xφ
y )−1 con-
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Figure 3.17: Converse relations — continued

siders the inverse of the orientation of y with respect to x while keeping the
position the same; the inverse of the orientation is a rotation by 180◦; (yΦ

z )−1

can be expressed as ((yz + 11) mod 22); this refers to the column in the compo-
sition table which is addressed by adding 11 columns to the column denoted by
yz; the modulo operator causing a return to the first column after the last col-
umn has been reached — this corresponds to a change in location by 180◦; x−1

y

simultaneously takes the inverse of position and orientation, i.e. all occurrences
of B are changed into F and vice versa, and all occurrences of l are changed
into r and vice versa. Accordingly in the dimension parallel to the reference
interval it holds that

B−1 = F (3.11)

F−1 = B (3.12)

and similarly for the perpendicular dimension

l−1 = r (3.13)

r−1 = l (3.14)

By the inverse operation it is also possible to compute the converse relations
which are described in Figure 3.17 by those relations in Figure 3.16, since these
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Figure 3.18: Given xφ
y and yφ

z possible orientations for xφ
z are derived

two parts of the table of converse relations are inverse relative to each other.
Furthermore, row-pairs 1 and 3, 2 and 4, 5 and 7, and 6 and 8 in Figure 3.16 are
inverse relative to each other. Hence, there are ultimately only 4 rows and 11
columns to be considered, making a total of 44 cases which need to be explicitly
defined in order to obtain all possible converse relations.

The composition algorithm terminates at the latest after the second recur-
sion step depending on the given position and orientation of y with respect to x.
Finally, the combinations of two orientations in order to compute the composi-
tion of the orientation xφ

z = xφ
y ◦ yφ

z are shown in Figure 3.18. By considering
these orientation combinations, the previous composition algorithm, the empty
relation, universal relation, and the identity relation, we obtain all 15625 com-
positions.

Two examples show the application of the composition algorithm:
1. xy = FBl

l and yz = FOFl
r

→ xy = FBl

l /∈ CT CT
→ (xφ

y )−1 = FFr

l ∈ CT (10th row)
→ CT (FFr

l , FO−1
r ) = CT (FFr

l , BOl) (4th column in Figure 3.21)
→ xΦ

z = {Fl, FOl, Cl}
→ xφ

z = Bl ◦ Fl = {Br, B, Bl} (Figure 3.18)
2. xy = BBl

m and yz = Dr
l

→ xy = BBl
m /∈ CT

→ (xφ
y )−1 = BFr

m /∈ CT CT
→→ x−1

y = FFr
m ∈ CT (11th row)

→→ x−1
z = CT (FFr

m , Dl) = {Fl, Fm, Fr} (8th column in Figure 3.21)
→ xΦ

z = (x−1
z )−1 = {Bl, Bm, Br}

→ xφ
z = Bl ◦ r = Fl (Figure 3.18)

Though it is not necessary to use the orientation of z for the composition
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operation it can be used in order to restrict the number of possible results. This
is because there may be some otherwise possible positional relations which are
not consistent with the orientation of z, for instance, xΦ

z = FCl cannot hold if
xφ

z ∈ {Fl, Br}.

All the entries in the composition table have been verified manually. Exam-
ining the composition table we can make some observations:
(a) All compositions are valid.
(b) There are comparatively few inferences with unique results; most conclu-

sions contain disjunctions of possible results, such disjunctions representing
coarse information.

(c) Almost all disjunctions of alternative results form conceptual neighbour-
hoods. The only exceptions to this are disjunctions which are made up of
different contains relations. These do not form a conceptual neighbour-
hood in every case since intersections are excluded; intersections would link
different contains relations, such as FCl and BCr, into neighbourhoods;
see, for instance, row 3 and column 5 in CT (Figure 3.19).

(d) In many cases neighbouring entries lead to similar neighbourhoods rather
than to completely different neighbourhoods. But note that the composition
table is not designed in such a way that all neighbouring preconditions form
conceptual neighbours; for example, column seven, Cr, and column eight,
Dr, do not form neighbouring concepts.

(e) Only a small fraction of the elements of the power set P(BA8
23) appear in

the composition table.
(f) The composition table has entries only for atomic relations; for compound

relations it is necessary to consider the unions of the compositions of the
corresponding atomic relations.

(g) In the complete table, with 15625 compositions, there are several symme-
tries which we have used in order to reduce the number of entries necessary.

Since we are now equipped with a proper relation algebra it is possible to apply
constraint based reasoning techniques. In the following, we consider a set M

of n intervals in the plane. The satisfiability problem asks for the existence of
n interval interpretations which are in accordance with a set of constraints Θ
over the relations in BA8

23 which describe relations between the objects in M.
Such an interpretation does exist whenever all relations make up a consistent
constraint network. As the identity relation holds for every interval by definition
of BA8

23, such a constraint net is node consistent. The computational evaluation
of the consistency of a constraint net is then performed as follows. In order to
achieve arc-consistency

∀xy ∈ Θ : xy := xy ∩ y̆x (3.15)

and in order to achieve path-consistency

∀xz ∈ Θ : ∀y ∈ M : xz := xy ◦ yz (3.16)
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These two steps are to be performed until no new relations are inferred. As the
empty relation is used to denote an inconsistent scenario, as soon as the empty
relation is deduced, the constraint net will have been proven to be inconsistent
because any empty relation will remain empty under any further computations
of equations 3.15 and 3.16. When the network has stabilised without inferring
the empty relation the constraint net has been shown to be consistent.

The procedure described can also be applied in order to integrate new knowl-
edge. Each new relation extends the set Θ, and we update the constraint net-
work by propagating such further constraints. Knowledge which is no longer
valid can be considered by updating the constraint net after the corresponding
relations in Θ have been deleted.
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Figure 3.22: Composition table — part 2 continued
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{Fl, Fm, Fr}

{Fl, FOl, Dl}

�
{Fl, FOl, Fm, FOml}

{Dl, Cl, FOl, BOl}

�
� {FOml, FCl, FOl, Cl}

{Fl, FOl}

{Fl, Fm}

{Cl, FOl}

{Dl, FOl}

�
{Fm, FOml}

� {FOl, FOml}

�
�� {FCl, FOml}

�
�
�

{FCl, Cl}

Figure 3.23: Singular relations defined by sets of general relations

3.2.3 Dealing with singularities and intersections

The relation algebra for line arrangements rests on a number of disconnection
relations, all being in general position. Therefore, mechanisms are required in
order to cope with singularities and intersections.

Singularities

In (Gottfried, 2004b) an appropriate method for dealing with singularities in
qualitative representations is discussed. Whenever we encounter indeterminacy
in the context of qualitative representations we consider sets of possible rela-
tions. This is not particularly precise, but precision is exactly what we want
to avoid in qualitative reasoning. For example, when can we be sure whether
parallel lines really are equal in length? Only when we have precise measuring
tools. When working roughly, without such tools, there is always likely to be
some uncertainty remaining (especially when sketching something roughly). At
most we know that two lines in a given arrangement are likely to be equal in
length, but at the same time we also know that they may be different to each
other — very similar, but different. Similar relations form neighbourhoods in
the BA23-graph, and such neighbourhoods circumscribe singular relations. Ac-
cordingly {Dl, Cl, FOl, BOl} would seem to be quite an appropriate description
of what we really know about two parallel lines which are probably equal in
length.

Figure 3.23 shows how singular relations are represented by sets of general
relations; note how easy it is to confuse the relations contained in one set when
sketching these kinds of arrangement. Only a quarter of all relations are de-
picted, since the other relations are symmetrical to those in Figure 3.23. As
with the disconnection relations of BA23, only disconnected singularities are
considered. Apparently connected singularities are treated as apparently con-
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nected general relations, i.e. they are conceived as disconnected relations in
which distances become arbitrarily short.

Our knowledge can be said to get more uncertain near singular relations —
this uncertainty being represented by sets comprising several possible relations
rather than a single definite one. In particular, if two endpoints are in singular
positions then these sets consist of three or four general relations, depending
on whether the endpoints lie on the same singularity, e.g. {Fl, Fm, Fr} in Fig-
ure 3.23, or on different singularities, e.g. {Dl, Cl, FOl, BOl}. By contrast, if
there is only one endpoint in singular position the sets consist of only two gen-
eral relations. We observe that all singularities are uniquely identified by this
technique.

�x

�y
���
z

xy = {Fl, Fm}
yz = Fl

xz = xy ◦ yz

= {Fl, Fm} ◦ Fl

= Fl ◦ Fl ∪ Fm ◦ Fl

= {Fl, Fm, Fr} ∪ {Fr}
= {Fl, Fm, Fr}

�x

�y
���
z xy = Fm

yz = Fl

xz = xy ◦ yz

= Fm ◦ Fl

= Fr

Figure 3.24: Transitivity with a singular relation (left), and without any singu-
larity (right)

How does this representation of singular relations affects reasoning processes?
Let us consider the example in Figure 3.24. We assume that we know the rela-
tions between x and y as well as those between y and z. Our goal is to infer the
relationship between z and x, i.e. xz. We do this by the composition operation.
The left hand side of Figure 3.24 shows xy in singular relation; the composition
result is indeterminate. In comparison, the right hand side of Figure 3.24 shows
xy in general relation; here the composition result is less indeterminate. Note
that this sort of reasoning is only necessary if xz cannot be perceived directly;
in Figure 3.24 the relation could of course be observed, rather than inferred.

Intersections

Having introduced a set of intersection-free basic relations, it is necessary to
show how it is possible to deal with intersections using these. In pictorial space
intersections are impossible, in perceptual space they are possible. Hence, from
the viewpoint of pictorial space, an intersection must be considered a higher level
concept. While two lines are perceived to intersect, in pictorial space four lines
meet at a point, as demonstrated in Figure 3.25. This Figure shows an example
of what we normally regard as an intersection. Such a case can be described
by one uninterrupted line segment and two coincident line segments, or by two
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pairs of coincident line segments. Additionally, there is no gap between two
coincident line segments, i.e. two coincident line segments meet.

��
��

��
��

��
��

��
��

Figure 3.25: How many line segments are there?

In order to describe this situation in pictorial space we need a concept which
distinguishes whether two disjoint lines meet or whether they are separated from
each other. Note that two lines which meet remain disjoint because they can be
removed separately — they are not connected. For two lines x and y which meet,
we write x‖y, and Figure 3.26 shows how it is possible to define by BA8

23 that
two lines coincide. Two coincident line segments are oriented identically, and
one of them is in the front-middle with respect to the other one. Denominating
them as x and y, it holds that xy = FF

m . The positional relation Fm ensures that
one interval is somewhere in the front-middle of the other one (left of Figure
3.26); the orientation relation ensures that both intervals point in the same
direction (middle of Figure 3.26). Taking positional relation and orientation
relation together the coincidence of these line segments is completely specified
(right of Figure 3.26). Of course, the two lines remain coincident whether the
primary line is placed before or after the reference line, and also if its orientation
is reversed (i.e. changed by 180◦) relative to the reference line.

The concept we refer to as an intersection can then be defined on the basis of
disjoint line arrangements in the plane: two lines in perceptual space intersect
if in pictorial space there are four lines, v, w, x, and y, for which it holds that

vw = {Fm, Bm}{F,B} ∧ v‖w∧

xy = {Fm, Bm}{F,B} ∧ x‖y∧
vx = Dl ∧ vy = Fr ∧ wx = Bl ∧ wy = Dr (3.17)

In perceptual space v and w form one single line, and so do x and y — com-
pare Figure 3.25. The singularities between vx, vy, wx, and wy are treated in
accordance with section 3.1.3. (In the case of a cross, relations such as vx = Fl

and vy = Fr may also be appropriate — it is only important that x is left of v
while y is right of v.)

Note that a situation such as the one on the right hand side of Figure
3.26 would be circumscribed by a set of possible general relations, namely
{Fl, Fm, Fr}, when interpreting an image, as explained earlier. But in order
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xy = F
Fl
m

�
x �

��y

xy = FOF
l

�
x

�y

xy = F F
m

�
x

�
y

Figure 3.26: Defining coincidence by BA8
23: on the left y is in relation Fm with

respect to x but oriented differently; in the middle y is not in relation Fm but is
oriented identically to x, and on the right y is again in relation Fm with respect
to x and additionally x and y have the same orientation

to model a special situation it is useful to constrain such an arrangement more
precisely, in this case by FF

m . This holds for all those singularities where both
endpoints of the primary line lie on the same singularity — this distinguishes
BA125 from BA113 and relates to the distinction between indeterminacy in per-
ception and the requirement for accuracy when modelling a situation.



Chapter 4

Characterising polygons
qualitatively

So far, we have analysed arrangements between disconnected intervals. Inter-
vals can be considered as abstractions of objects, representing their intrinsic
orientation, their extension seen from a particular viewpoint, or their direction
of movement. The length of an interval may represent the length of the object,
its speed, or the distance between two objects or components of one object.
However, in order to describe the shape of single objects we need to consider
arrangements of connected lines. That is, we are interested in describing the
outlines of shapes, which constrain how objects are related to other objects and
their environment.

We have previously referred to Attneave’s investigations on the subject of
using polygons for approximating shapes (chapter 2.1.4). Outlines of shapes
can be usefully approximated by polygons, which form a special class of line
arrangements, and we will therefore consider the characterisation of polygons
as a reasonable alternative to the characterisation of arbitrary shapes. The term
polygon derives from the Greek poly (many) and gonia (angle). A polygon is a
planar path composed of a finite number of sequential straight line segments.
Sometimes the term polygon also refers to the interior of a polygon, but in
the present context, it will be used only to indicate a group of straight line
segments which either form a closed path or an open one. More formally, we
define polygons as follows:

Definition 4.1 (Polygon) A polygon P is an n-tuple (x1, x2, .., xn), n ∈ N of
line segments which are connected at their endpoints. One line, x1, is distin-
guished as the first line segment, and another one, xn, is distinguished as the
last line segment. The orientation of line segment xi is defined in such a way
that its front connects to the back of xi+1.

In the following, line segments may be identified either with x1, x2, x3, etc, or
with x, y, z etc., n denotes the number of lines comprising the polygon under



76 CHAPTER 4. CHARACTERISING POLYGONS QUALITATIVELY

consideration, and x ∈ P will denote that x is a line-component of polygon P .
What distinguishes polygons from arbitrary line arrangements is that each poly-
gon defines an order for its lines. This order can be described by the definition
of the successor of a line:

Definition 4.2 (Successor) Each line xi, i = 1, .., n − 1 of a polygon P has
exactly one successor x′

i = xi+1. For closed polygons it holds that x′
n = x1.

In order to refer to indirect successors we use also symbols such as < and ≤. It is
quite worthwhile to investigate polygons more thoroughly, since they have often
been characterised using quite general properties — prominent among them:
1. A polygon is either open or closed depending on whether each line segment,

including xn, has a successor. A closed polygon forms a path that, followed
from any point on the path, will return to the starting point after passing
through every other point forming the polygon.

2. A polygon is simple if there are no two lines which intersect. Otherwise it
is called complex.

3. A closed and simple polygon is convex if for two arbitrary points contained
in the interior of the polygon it holds that the straight line which connects
these points is wholly contained in the polygon. Otherwise the polygon is
concave.

4. A convex polygon whose vertices all lie on its circumcircle is concyclic or a
cyclic polygon.

5. A cyclic polygon is called regular if all its sides are of equal length and all
its angles are equal. It is otherwise irregular.

These properties allow to distinguish some shapes. But as soon as more sophis-
ticated shapes are to be distinguished such properties are too general. In fact,
taking the polygonal approximation of the silhouette of an arbitrary object, we
always obtain a closed and simple polygon, being in most instances concave,
non-cyclic, and irregular. It is rather the question how to distinguish different
polygons which are all closed, simple, concave, non-cyclic, and irregular; or,
when dealing with trajectories, we have to distinguish polygons which are in
general open and non-simple.

Eventually, polygons are named according to the number of sides involved,
combining a Greek root with the suffix -gon, among others trigon = 3, tetragon
= 4, pentagon = 5, hexagon = 6, heptagon = 7, octagon = 8, enneagon = 9,
decagon = 10, and googolgon = 10100. Frequently, the abbreviation n-gon is
used to refer to a polygon made up of n lines. We argue that there is much
more to say about polygons: they can be conceived as special arrangements of
lines. We already analysed line arrangements and considered distinctions which
are described by BA, i.e. distinctions which are confined to disconnected lines.
But besides disconnected parts polygons are distinguished by the way how lines
are connected. Therefore, we shall first of all explicitly analyse which kinds of
connection relations in polygons exist, and we shall see how these connected sub-
polygons describe local polygonal properties. By contrast, we shall later learn
how disconnected line arrangements describe global properties of polygons.
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Figure 4.1: A reference line and resulting orientation grid

4.1 Local orientation

We will now discuss local polygonal properties. Specifically, we will investigate
how the local orientation progression can be described by arrangements of con-
nected lines. We will refer to descriptions of connected lines as to line tracks
which define equivalence classes of polygons by emphasising specific polygonal
properties. They belong to the class of shape descriptions which are known as
local feature schemes (Meathrel & Galton, 2000) since they are obtained by
determining relations between line segments which are adjacent in the outline
of a shape.

How are line tracks related to bipartite arrangements? They can be con-
ceived as a number of line segments with pairs of lines meeting at their endpoints,
i.e. we are concerned with a special subset of meet-relations in two dimensions.
From the point of view of BA23 such relations involve singularities, which are
described by subsets of BA23-relations which act to circumscribe meet-relations.
Line track relations are fundamental when characterising polygons Therefore,
we will systematically enumerate them and represent them in the form of shape
primitives, instead of considering them as singularities.

4.1.1 Bipartite line tracks

The most general line tracks are made up of two lines. They describe obtuse and
acute angles and are represented by BA(28) and BA(30). In order to construct
shape primitives we consider only general positions, as for BA23. Since there
are six general positions with respect to a reference line (as shown in Figure
4.1) we obtain six bipartite relations, which are depicted in Figure 4.2. The line
a-b is the reference line, and c is the endpoint of the related line, which varies
from relation to relation. These primitives have been introduced in (Gottfried,
2003a) where they are referred to as bipartite line tracks, since they consist of
two lines. Bipartite line tracks (BLT , for short) represent six different meet-
relations in two dimensions. The i-th relation can be indicated by BLT (i), for
i ∈ {1, 2, 3, 4, 5, 6}.

Bipartite line tracks are closely related to another local feature scheme which
also provides a description of polygons: Jungert (1993) considers two adjacent
lines in an oriented polygon in order to characterise a vertex which connects
these lines. This description is obtained by symbolic slope projections, that is,
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BLT (1)≡BA(30)

���a b
c

BLT (2)≡BA(60)

��
BLT (3)≡BA(90)

�
BLT (4)≡BA(120)

�

BLT (5)≡BA(150)

�

BLT (6)≡BA(180)

���

Figure 4.2: Six distinguishable classes of bipartite line tracks; as indicated by
the BA-number, these line tracks correspond to special bipartite arrangements

the endpoint, pj+2, of the second line is projected (parallel to the first line; see
Figure 4.3) onto the x-axis. From this, we can derive whether the vertex at pj+1

forms a convex or concave part of the polygon. We can see from the projection
string (the ordering of the projections on the x-axis — since pj and pj+1 define
the slope of the projection, they are projected onto the same point) whether
pj+2 comes before pj or whether it follows it on the x-axis. In the first case
the vertex between the lines is concave, otherwise it is convex. This is based on
Jungert’s stipulation that a polygon is always to be traversed anticlockwise, the
figure being left of the polygonal path, the ground being on its right. If we follow
this convention then BLT (1), BLT (2), and BLT (3) correspond to convex parts
and BLT (4), BLT (5), and BLT (6) form concave parts. Note that Jungert has
to specify explicitly the special case in which the first line runs parallel to the
x-axis, because the slope of the first line is then zero, i.e. no slope projection to
the x-axis exists. Furthermore, he has to distinguish whether the slope of the
first line increases or decreases.

Figure 4.3: Two adjacent lines pj − pj+1 and pj+1 − pj+2 and the dotted pro-
jection lines — from (Jungert, 1993)

In order to distinguish between acute and obtuse angles, the projections on
the y-axis must be considered. These are obtained by projecting the points
perpendicular to the first slope onto the y-axis. If pj+1 and pj+2 are equal
regarding this projection a right angle can be inferred; if pj+1 < pj+2 then the
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angle is obtuse otherwise it is acute. Again, several different cases must be
distinguished, depending on the orientation of the projection line with respect
to the plane, i.e. with respect to the axis of ordinates and the axis of abscissae.
For bipartite line tracks it holds that the angles of BLT (1), BLT (2), BLT (5),
and BLT (6) are acute, those of BLT (3) and BLT (4) are obtuse.

Polygons

Jungert traverses around a polygon in order to determine for each vertex its
properties as just described. So do we. As a consequence a closed polygon
with k ≥ 2 lines is described as a vector of k BLT s, an open polygon as a
vector of k − 1 BLT s: BLT (i, j, ...), i, j ∈ {1, 2, 3, 4, 5, 6}. In order to be able
to treat each arbitrary polygon with k lines, and not only those which consist
of a multiple of two lines, a vector of BLT s describes a polygon in such a way
that two consecutive BLT s share one line, i.e. each line functions as both as
a primary line and as the reference line in the context of the successive BLT .
A BLT can be regarded as a property of an arrangement of two connected
lines, or as a property of a vertex, as Jungert does. Since any two connected
lines, rather than just the point which connects those lines, determine the BLT
(and, identically, the kind of vertex in Jungert’s system) it seems to be more
appropriate to regard it as a property of a specific line arrangement and not of
a single point.

Jungert stipulates that any polygon is to be analysed beginning at the up-
permost left corner of the polygon. We do not want to commit ourselves to any
external reference system and therefore a BLT description of a closed polygon
can begin with any line. As a consequence, for closed polygons, different BLT
descriptions are obtained depending on where one starts to traverse the polygon.
However, any description can be converted into another equivalent description
by means of a cyclic permutation of the BLT s involved. We can then choose for
any given polygon the description that comes first in the ordering with respect
to the BLT numbers. Figure 4.4 shows an example.

1

3

3

2

3
4

4

3

BLT (1, 3, 3, 2, 3, 4, 4, 3)

�
�
�

�
�
�����

Figure 4.4: Example polygon described (anticlockwise) by bipartite line tracks
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Neighbourhood graph

While Jungert’s approach consists of describing the process which leads to the
characterisation of polygons, we have made explicit a representation with six
different relations. Distinguishing between a representation and the process
involved in obtaining a description which is based on this representation is
important. Once in possession of an explicit representation, it can be possible
to carefully exploit further characteristics of that representation. In our case,
such characteristics are found by means of the neighbourhood graph. Figure 4.5
shows the neighbourhood graph of BLT -relations. As with the neighbourhood
graph of BA23, two relations are neighbours if they can be transformed into
one another by continuously moving one endpoint to another position whilst
crossing a line of the reference system (Figure 4.1) exactly once. With the aid
of the neighbourhood graph it is possible to define similarities between polygons
and to describe possible deformations (Gottfried, 2003a). Furthermore, it allows
us to deal with singular positions, as we shall learn in the next paragraph.

BLT (1)

���
BLT (2)

��
BLT (3)

�

BLT (4)

�

BLT (5)

�

BLT (6)

���

Figure 4.5: Neighbourhood graph of the BLT -relations

Singular line tracks

Those BLT s which have been considered so far would have been better denomi-
nated as general bipartite line tracks because singular positions were disregarded.
Line tracks which consist entirely of singular positions are of special interest with
respect to the boundaries of artificial objects which often have sides that are
perpendicular to each other. Such sides form right angles, i.e. we are neither
concerned with acute nor with obtuse angles but with line arrangements in sin-
gular positions. A singular bipartite line track is referred to as BLT (a-b), i.e.
BLT (a-b) refers to an edge in the neighbourhood graph, where a and b are the
relations which are connected by this edge. As an example, consider BLT (1-2)
in Figure 4.6. This singular position is in between the two general positions
BLT (1) and BLT (2).

Singular line tracks with the endpoints lying on the positions 2, 5, 8, 11, or
14 (see Figure 3.5) correspond to degenerated cases where we only perceive a
single line. These positions are denoted in the following way: BLT (3−4) (posi-
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tion 14 in Figure 3.5), BLT (2−3−4−5) (position 11), BLT (2−5) (position 8),
BLT (1−2−5−6) (position 5), and BLT (1−6) (position 2). This notation allows
us to indicate all those general positions between which there is uncertainty re-
garding the position of a point or line. Uncertainty arises whenever a position is
perceived as being somewhere near the transition between two or more general
positions. In most cases, a singular position will not definitely be recognised as
being singular. One will simply have doubts regarding a general position which
lies near the transition to another general position. Thus, the way in which
singular positions are treated is related to the question of dealing with uncer-
tainty about positions near boundaries of two or more neighbouring regions.
Accordingly, in (Gottfried, 2004b) singular relations are represented by sets of
general relations. This is justified by the fact that singular relations correspond
to situations about which a perceptual system is uncertain, and in qualitative
reasoning uncertainty is frequently dealt with by considering sets of possible
situations. In this way singular relations are second-order relations which are
circumscribed by basic relations rather than being basic relations themselves.
By contrast, Jungert treats arrangements in singular position at the same level
as those in general position. Also, he distinguishes BLT (2-3) and BLT (4-5),
but not BLT (1-2) and BLT (5-6).

Non-oriented primitives

With bipartite line tracks we introduced a shape description which consists
of six oriented shape primitives. Oriented primitives allow us to discriminate
contour parts which are oriented to the shape of an object from those which
are mirror-symmetrical to the former parts, i.e. parts which are oriented to the
background. Hence, we distinguish BLT (1) and BLT (6), BLT (2) and BLT (5),
as well as BLT (3) and BLT (4) (see Figure 4.5). In ambiguous cases, BLT 6 is
used to refer to these six relations.

In the context of vision and in particular when being faced with imprecise
sketches, we often have to deal with incomplete shape information. As a conse-
quence, partial shape information has to be described. But frequently nothing
can be said concerning the orientation of shape parts when it is not known on
which side of any contour-part the figure or the ground is. In these cases we
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�
BLT (5)

�
= ⊗BLT (5-6)

��

BLT (5)

�
BLT (6)

���

Figure 4.6: Singular bipartite line tracks
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BLT 3(3, 3)

�� ��

BLT 3(3, 3)

��

��

Figure 4.7: Two different polygons not distinguishable by BLT 3

have to consider primitives which are not oriented. Putting together the sym-
metrical relations, namely BLT (1) and BLT (6), BLT (2) and BLT (5), as well
as BLT (3) and BLT (4), we obtain three non-oriented relations, i.e. one obtuse
angled primitive, like BLT 6(3), and two kinds of acute angled primitives, like
BLT 6(1) and BLT 6(2). We shall refer to these relations as to BLT 3. Such
non-oriented primitives have the disadvantage that some shapes can no longer
be distinguished; the two polygonal parts in Figure 4.7, for example. In order
to distinguish more complex non-oriented primitives we will consider line tracks
made up of three lines in the next section. But before that, we shall have a
look at some combinations of BLT s, in order to demonstrate of what kinds of
polygons can be distinguished, even by non-oriented BLT s.

Figure 4.8 depicts polygons which are made up of BLT 3(2) and BLT 3(3).
Only the distinction between acute and obtuse angles is considered, i.e. BLT 3(1)
and BLT 3(2) are treated equally. We refer to these relations as BLT 2. In addi-
tion, rectangular angles (BLT 3(2-3)) are considered. We are able to distinguish
a considerable number of different quadrilaterals, though BLT 2 is only based
on the distinction between acute and obtuse angles. Thus, BLT 2 is both simple
and expressive, and we will therefore consider one further set of BLT relations.
This set, which we will call BLT 4, is the oriented counterpart of BLT 2, as BLT 6

is the oriented counterpart of BLT 3.

Summary

While Jungert’s approach requires the slope projections onto the axis of ordi-
nates and the axis of abscissae, BLT s are defined in a way which is independent
of any external reference system. There is no need for such a reference system
since the orientation grid suffices for the distinction of acute, right, and obtuse
angles, and for the distinction of convex and concave shapes as well as for de-
termining where the concavities of a polygon are situated. Where an external
reference system is used, a number of different cases must be considered in order
to obtain these properties and this makes Jungert’s approach rather complex.
On the other hand, a further possibility when using an external reference system
is the determination of extreme points. These describe whether a vertex is north
of the other two vertices to which it is adjacent, or whether it is south, west, or
east of them, or between them with respect to both axes. This is achieved by
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Figure 4.8: Simple convex quadrilaterals described by BLT 2 arranged in a neigh-
bourhood graph; the anticlockwise encoding starts always with the bottom line

orthogonally projecting the vertices onto the axis of ordinates and the axis of
abscissae. Unfortunately, when using such extreme points Jungert’s description
ceases to be rotation invariant.

By contrast to Jungert, we distinguish between the construction process of
the representation and the representation itself. We have produced a set of
explicit primitives (BLT 4) which allow for the same distinctions as Jungert’s
system. There are only two exceptions: the rotation-variant extreme points and
the consideration of an ordering between adjacent angles. The latter describes
which of two adjacent angles is larger, resulting in a list of smaller than and
larger than relations, for all angles around the polygon. We could easily sup-
plement a BLT description with such relations if required, however. On the
other hand, there are some properties which are outside the scope of Jungert’s
approach. Using the orientation grid there are relations which allow distinctions
between different kinds of acute angles. These relations are contained in both
BLT 3 and BLT 6. Non-oriented primitives are defined by BLT 2 and BLT 3.
These make sense whenever fragments of shapes are to be analysed, as there
is frequently a lack of knowledge about orientations in shape-fragments. More
sophisticated non-oriented relations are introduced in the following section.
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D� � � � B and C are the reference points of the reference line.

A and D are the endpoints of the two related lines.

Figure 4.9: A line track (AB,BC,CD) which consists of three connected lines

4.1.2 Tripartite line tracks

When we allow for a third line in a line track, a more expressive set of line
tracks is obtained. Three connected lines can be arranged in more different ways
than two connected lines, since we must consider all possible combinations of
two connected bipartite arrangements. Local orientation information is either
described by a reference line and its successor, as for BLT -relations, or by
considering both the predecessor of the reference segment and its successor. In
any case, local orientation information is defined by the way in which adjacent
lines are connected to each other. In this section we investigate relations which
are made up by three connected lines, i.e. we consider both the predecessor
and successor of the reference segment. Figure 4.9 outlines the description
of three connected lines using the reference system in Figure 4.1. The two
endpoints of the medial line, B and C, define the reference line, the two outer
lines are related to this reference line. Note that nothing is specified about the
relationship between the two outer lines, since these lines are not connected.
As such their relationship concerns non-local orientation information, which is
dealt with later on.

T LT 36

As Figure 4.9 shows, each of the two endpoints of a tripartite polygon can lie
in one of six possible areas. Therefore, there are 62 = 36 different relations,
which are depicted in Figure 4.10. These line tracks have been introduced in
(Gottfried, 2002), and, since they are composed of three lines, they are referred
to as tripartite line tracks (T LT ). The i-th relation is indicated by T LT (i).
The medial line is considered to be oriented, in Figure 4.10, from left to right
with respect to the image plane.

Having earlier argued that non-oriented primitives are particularly useful
when dealing with incomplete shapes, T LT -classes which differ only regarding
symmetrical variations can be put into a single class in order to obtain a set of
non-oriented cases. Consider, for example, T LT 36(1), T LT 36(15), T LT 36(22),
and T LT 36(36). These relations look quite similar since in each case the two
endpoints are lying in the same area with respect to the reference line; only
their relation to the orientation of the medial line differs. Similar symmetrical
relationships hold for all other relations. Being interested in non-oriented shape
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Figure 4.10: 36 distinguishable classes of oriented line track arrangements with
three connected lines

primitives, in the next paragraph a set of T LT relations are considered in which
the medial line is no longer oriented.

T LT (10)

� ���
T LT (9)

����
T LT (15)
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T LT (2)

� ���
T LT (1)

����
T LT (7)

������

Figure 4.11: Twelve equivalence classes distinguished by tripartite line tracks

T LT 12

Whereas Jungert is restricted to oriented shape parts, we are capable of dealing
with these non-oriented T LT s, which are depicted in Figure 4.111. There are
twelve of them in total, since symmetrical T LT 36 relations are put into equiv-
alence classes. We are now able to distinguish the two tripartite polygons in
Figure 4.7 by T LT 12(6) and T LT 12(14).

A conceptual neighbourhood graph (as introduced for bipartite arrange-
ments) is shown in Figure 4.12, and allows us to draw conclusions about the

1Note that in (Gottfried, 2002) an encoding has been introduced in order to directly refer
to properties of T LT s. We use those T LT -numbers but will not discuss this encoding here.
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relationships among the T LT relations, especially with regard to their similar-
ities to each other. Singular tripartite line tracks are defined in the same way
as singular bipartite line tracks. For example, T LT (8-13), T LT (8-14), and
T LT (13-8-14) are shown in Figure 4.13. The latter demonstrates a line track
in which both sidelines are in singular position.
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Figure 4.12: Left: the conceptual neighbourhood graph; Right: example in-
stances; the numbers refer to the T LT 12 relations

A closed polygon with k ≥ 3 lines is described as a vector of k T LT s, an
open polygon as a vector of k − 2 T LT s:

T LT 12(i, j, ...), i, j ∈ {0, 1, 2, 5, 6, 7, 8, 9, 10, 13, 14, 15}.
In order to be able to treat each arbitrary polygon with k lines, and not only
those which consist of a multiple of three lines, a vector of T LT s describes
polygons in such a way that two consecutive T LT s share two lines. Some pairs
of T LT s are not compatible with being neighbours in this way. For example,
T LT 12(1) and T LT 12(6) cannot be combined, since for a combination to be
possible they would have to share two adjacent lines (which is to say one angle).

T LT (8-13)

�

=T LT (8)

� �

⊗T LT (13)

��

T LT (8-14)

�

=T LT (8)

� �

⊗ T LT (14)
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T LT (13-8-14)=T LT (8-13)

�

⊗T LT (8-14)

�

T LT (13-8-14) T LT (8-9-10-13)

%
%

T LT (13-9-15)

����

T LT (5-0-6) T LT (0-1-2-5)

��

T LT (5-1-7)

����

Figure 4.13: Upper row: all singular tripartite line tracks where both sidelines
are in singular position; Lower row: the construction of T LT (13-8-14)
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But the angles of T LT 12(1) are both acute, whereas the angles of T LT 12(6)
are both obtuse. A compatible combination consists of four lines, or rather of
two entwined T LT s. As for bipartite line tracks, for a given polygon, we choose
from the possible cyclic permutations that description which comes first in the
ordering with respect to the T LT numbers.
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Figure 4.14: Example polygon described (anticlockwise) by tripartite line tracks

Running around the outline of a shape, it is reasonable to use T LT 36 for a
description. We can define the orientation as being, for example, anticlockwise
regarding the two-dimensional plane, and we are able to distinguish between
the inside and outside of the shape. Figure 4.14 shows an example shape with
both the T LT 12 and T LT 36 descriptions. While T LT 36 distinguishes both
sides of the contour as well as between the front and back of any individual
part, T LT 12 distinguishes parts which are invariant with respect to rotation
and reflection. From this, it follows that convex and concave parts of an outline
which are otherwise similar will receive the same classification in T LT 12.

T LT 6 and T LT 16

If we examine T LT 12 more precisely, we notice that there are some pairs of
similar relations, which differ only in the length information encoded: T LT 12(0)
and T LT 12(2), for example, differ only in the length of the sideline forming an
acute angle with the medial line. Taking an arbitrary instance of T LT 12(0) and
lengthening the sideline which makes the acute angle, a point instant can be
found where the relation changes to T LT 12(2), that is, the corresponding edge
between nodes 0 and 2 of the neighbourhood graph in Figure 4.12 is visited.
A similar process can be applied to other T LT 12-relations, and thus we can
subsume different T LT 12-relations into single T LT 6-relations as introduced in
(Gottfried, 2003b):

T LT 6(0) = [T LT 12(0), T LT 12(2)],

T LT 6(8) = [T LT 12(8), T LT 12(10)],

T LT 6(1) = [T LT 12(1), T LT 12(5), T LT 12(7)], and

T LT 6(9) = [T LT 12(9), T LT 12(13), T LT 12(15)].

Furthermore, it holds that T LT 6(6) = T LT 12(6) and T LT 6(14) = T LT 12(14).
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acute - acute
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Figure 4.15: Six primitives distinguished by T LT 6 arranged in a neighbourhood
graph

The relations of T LT 6 are depicted in Figure 4.15. Whereas T LT 12 encodes
some information about length as well as orientation, T LT 6 encodes informa-
tion only about orientation. It can be argued that T LT 12 also encodes only
orientation information, but with respect to the reference system in Figure 4.9;
in a way the concept of orientation is different for T LT 12 and T LT 6. The latter
is simpler since it only distinguishes acute angles, obtuse angles, and the two
different sides to which a sideline can point.

In the same way that we defined BLT 4 as the oriented version of BLT 2,
we can define the oriented version of T LT 6 and obtain T LT 16 (see Figure
4.16) which is a subset of T LT 36. For T LT 16, the two kinds of acute angles
distinguished by T LT 36 are put together into a single equivalence class.
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Figure 4.16: 16 oriented classes of line track arrangements with three connected
lines; the medial line is oriented from left to right, the internal region is on the
left of the medial line (i.e. above it, in the diagram)
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4.1.3 Comparing bipartite and tripartite line tracks

Connected line tracks are divided up into oriented and non-oriented relations.
The relations of BLT 4, BLT 6, T LT 16, and T LT 36 are oriented. For BLT s the
orientation is determined by one of the two lines, which is oriented towards the
other; that is, considered as a vector its head is connected to the second line.
Orientation must be explicitly defined for both BLT s and T LT s.

The relations of BLT 2, BLT 3, T LT 6, and T LT 12 are not oriented. BLT 3

and T LT 12 are based on the reference system in Figure 4.9. T LT 12 is more
expressive than BLT 3 since it considers two adjacent angles simultaneously and
also distinguishes between the two sides of a line. BLT 3 distinguishes only
obtuse angles and two kinds of acute angles. By contrast, BLT 2 and T LT 6 are
restricted to acute and obtuse angles. T LT 6 is more expressive than BLT 2 for
the same reasons that T LT 12 is more expressive than BLT 3. BLT 2 is confined
to two relations, i.e. the distinction between acute and obtuse angles.
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Figure 4.17: The comparison of BLT 6 and T LT 36; on the left of the equivalence
sign is the T LT 36 number, on the right the BLT 6 number; the BLT 6 description
starts with the sideline which is connected to the left-hand end of the medial
line

Let us consider Figure 4.17 in which BLT 6 and T LT 36 are compared —
the two most expressive sets of relations. The BLT 6 description starts with
the sideline which is connected to the left of the medial line. The distinction
between BLT 6 and T LT 36 arises because with BLT 6 the reference system is
initially generated from one of the two sidelines and the medial line is described
relative to this sideline. With T LT 36, however, this sideline is described relative
to the medial line. The other sideline is described relative to the medial line in
both cases. Because of this difference, some relations are not treated equally
by BLT 6 and T LT 36, as demonstrated in Figure 4.18. All T LT 36-relations
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BLT 3(1, 3)

�� ��

BLT 3(2, 3)

�
�
�
�

Figure 4.18: Two different polygons not distinguishable by T LT 36 but which
can be distinguished by BLT 3; for both polygons the relationship T LT 36(9)
holds

can also be distinguished by BLT 6. However, some line tracks that are not
distinguishable using non-oriented BLT s can be distinguished with T LT s.

When we compare the two least expressive, non-oriented sets of relations,
namely BLT 2 and T LT 6, this difference is more obvious. Whereas BLT 2 just
distinguishes acute and obtuse angles, T LT 6 makes some more sophisticated
distinctions. This can be usefully demonstrated by considering polygons con-
taining multiple T LT s (for example, polygons with four lines), and seeing how
many equivalence classes each set of representations produces. These are de-
picted in Figure 4.19. A more complex representation still is provided by T LT 12

which distinguishes a total of 64 different equivalence classes for quadripartite
line tracks. These are depicted in Figure 4.20. This also shows that some re-
lations in T LT 12 are less readily distinguishable from each other than those in
T LT 6.

To summarise, we obtain different sets of line track relations depending on
the following distinctions: the usage of the orientation grid versus distinguishing
acute and obtuse angles, oriented versus non-oriented primitives, and bipartite
versus tripartite line tracks. Accordingly:

Definition 4.3 (Local Property)
Local polygonal properties are defined by adjacent lines in a polygon, that is,
either by a line and its successor, or by a line and both its successor and its
predecessor. We distinguish eight sets of relations, all of which define local
properties:
• BLT 2: non-oriented, acute vs. obtuse
• BLT 3: non-oriented, orientation grid
• BLT 4: oriented, acute vs. obtuse
• BLT 6: oriented, orientation grid
• T LT 6: non-oriented, acute vs. obtuse
• T LT 12: non-oriented, orientation grid
• T LT 16: oriented, acute vs. obtuse
• T LT 36: oriented, orientation grid

Our definition of local properties sticks to the concept of local feature schemes
(Meathrel & Galton, 2000). That is, by local properties we refer to relations
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between adjacent line segments of polygons. By contrast, (Clementini & Fe-
lice, 1997) use the term local properties to refer to those aspects of the shape
which concern noise — something which should be removed by the application
of regularisation techniques. In this way Clementini and De Felice do not dis-
tinguish between local aspects and global aspects of shapes, both of which could
be non-accidental shape properties in sketches. It is certainly important to deal
with noisy information (for example, using regularisation techniques). But like
Jungert (1993) the distinction between shape representations and the processes
to obtain those representations are mixed up, inevitably leading to fundamen-
tal aspects of the representation being overlooked: Jungert did not recognise
relationships between shape primitives though he implicitly defines primitives
comparable to BLT s, and Clementini and De Felice fail to make a distinction
between local and global shape aspects. We will now turn our attention to global
properties, which are even more versatile than those aspects we have already
considered in our discussion of local properties.
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Figure 4.19: Quadripartite line tracks represented by BLT 2 (left) which com-
prises only six equivalence classes, and by T LT 6 which distinguishes 20 classes

�
�� ��

�
��

�����
�
�

������

  ����
��

� ��

��
�

� ��

&
&
��

����
�

�����
� �

��

�
�

�
��
�

�
�
��

�
� �

����
�

�������
�
�

������
�

������

���

���
� ������

������
�

���
��

��
�
�
'
''

�
���
�
�

(
(
(�����
�

(
(
(�����

�
���

�
���
�

�
�
���

�
�
�

�����

(
(
(����
((

(
(
(��
��

�����
�

��
��

��
��
�
�

��
����
� ��

��
� ��

��
�

�

��
��
�

�

��
��
�
�
�

�
�
��

"
��

� ��
��

�
��

��
� � ��

���
�
�
��

"

� �
�

� �

� �))

� ��

� ���

��
� �

�
�
��

"

��

�
�
�
�
�
��

�
�
�

����

�
�
��

� �
��

Figure 4.20: 64 quadripartite line tracks distinguished by T LT 12
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4.2 Global orientation

In this section, we shall introduce a global feature scheme which complements
local feature schemes (Meathrel & Galton, 2000), such as the one defined in
the previous section. As Figure 4.21 demonstrates, sometimes shapes look quite
different even when they are based on the same T LT s. Locally viewed, these
shapes are entirely similar. Their local course is qualitatively equal and metri-
cally similar. The longer two curves with only minor local differences are, the
more such local differences will accumulate into globally significant differences.
These global differences are the consequence of exploiting the T LT s’ degree of
freedom in different ways.
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Figure 4.21: Three examples for T LT 6(14)-contours; above: the shapes frag-
mented into their constitutive T LT s

The polygons in Figure 4.21 consist entirely of T LT 6(14)-segments. Such
polygons are always bent to one side, and form patterns like circles and spirals.
In order to understand these tendencies of T LT 6(14)-polygons, we must take a
closer look at T LT 6(14)-relations. The endpoints of such line tracks lie on the
same side with respect to the medial line, and both angles are obtuse. Therefore,
entwined T LT 6(14)-relations always make up a curved line which never changes
its local orientation, and which can be regarded as an arc. This constancy in
orientation can be comprehended if we imagine tracing a T LT 6(14)-contour
with one finger without the need for wriggling. The circle-like figures described
by our finger may get larger or smaller, but they always remain approximately
like a circle or an ellipse. Figure 4.21 shows three examples: depending on
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precise length and angle information, we obtain circle-like figures, or spirals
(where the lines become consistently shorter), or loops (where the lines vary
in length and angle). While circles, spirals, and loops are locally equal they
obviously differ in terms of global shape properties.

Local properties correspond to local variations of the orientation which are
described by line tracks. By contrast, global properties correspond to global
variations of the orientation, i.e. variations concerning the relations between
disconnected line segments. Therefore, global orientation variations have to be
described by arrangements of disconnected intervals, i.e. by relations of BA8

23.
Analysing which of the relations of BA8

23 hold, we should be able to characterise
concepts such as circles, spirals, and loops.

Defining a polygonal circle (such as the one in Figure 4.21.a) as oriented
anticlockwise, for two arbitrary disconnected line segments x and y it holds
that

xΦ
y ∈ {Fl, FOl, Dl, Cl, BOl, Bl} (4.1)

That is, for any polygonal circle each line segment lies to the left of any other
one. This is not true of either loops or spirals, allowing us to distinguish them
from circles, but not from each other. Running along a spiral from the outside
inwards, lines which have already been visited can lie either to the left or to
the right, but forthcoming lines are always to the left. Traversing along a loop,
however, forthcoming lines can be on either side. Thus, even as simple a tool as
the left-right dichotomy, combined with knowledge of the ordering of relations
will allow us, when applied to nonadjacent lines, to discriminate roughly between
circles, spirals, and loops. From these examples we learn that we need to know
both which BA8

23-relations hold and how they are ordered.
Another example is shown in Figure 4.22. The left hand side of Figure

4.22 depicts a polygon which changes its local orientation at every step. This
is characterised by T LT 6(1). But globally this polygon leads steadily in one
direction — it never turns backwards. The polygon on the right hand side of
Figure 4.22 is made up of T LT 6(1)-relations, too. But this time the polygon
changes its global orientation — it is in fact closed. We refer to the former
polygon as globally straight and locally curved, and to the latter one again as
locally curved but also globally curved. The same considerations can be applied
to polygons made up of different T LT -relations, such as the one in Figure 4.23.

What makes it difficult to analyse global properties is that a curve can be
arbitrarily complex at a fine scale. A complex curve may nevertheless possess
global properties which are very simple, such as a more or less straight course
or an arc — for comparison, consider the case of a Mandelbrot set (Mandel-
brot, 1986), where zooming in reveals ever more detailed and complex twists
and turns. The right hand side of Figure 4.22 shows a good example: here we
are concerned with an egg-like shape from the global point of view, whereas
this polygon is locally quite complex. A reasonable way of dealing with lo-
cally complex curves is to consider them at coarser granularity levels, i.e. at
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Figure 4.22: Two examples of jagged T LT 6(1)-contours
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Figure 4.23: Two globally very different examples of T LT 6(6)-contours

granularity levels where local complexities are smoothed away, for example by
polygonal simplification algorithms. The analysis of global properties is easier
for a smoothly curving shape than for a jagged one. However, regardless of
the granularity level chosen, we are able to characterise polygons using BA-
relations. For instance, for the polygon in Figure 4.24.a it holds that xy = DB

r .
By contrast, in Figure 4.24.b it holds that xy = FF

m .
It seems that straightness is one of the simplest global properties, but it is

actually very difficult to define. We will discuss it in order to understand what
difficulties arise when characterising polygons using global properties. Infor-
mally, by straight polygons we refer to polygons which lead into one direction.
The simplest example is a single straight line. But how do we know that a
polygon which is made up of n line segments is straight? The left hand side
of Figure 4.23 suggests that one may be able to conclude this from the T LT s
involved. But the polygon on the right hand side of Figure 4.23 demonstrates
that this is not the case. Local orientation information, as encoded by T LT s,
does not allow us to derive global properties. The polygon on the left hand side
in Figure 4.24 suggests that it might be possible to use BA-relations for the
purpose of recognising straightness. In this case it holds that xy = DB

r . From



96 CHAPTER 4. CHARACTERISING POLYGONS QUALITATIVELY

a b

x

z

�
�
�

�
�

y x
���

�
��

�

y

Figure 4.24: Two different polygons

this, one may come to the conclusion that there are special BA-relations from
which we can directly derive whether a polygon is generally straight (4.24.b)
or otherwise (4.24.a). But as Figure 4.25 shows this is not true: In both cases
it holds that xy = DB

r , but while the polygon on the left is straight from the
global point of view this is clearly not true for the one on the right. Thus, we
can see that it is not sufficient to analyse which BA-relations are present in
order to derive global shape properties.

a b

x
�

y

x
�

y

Figure 4.25: Two different polygons

The problem is that Figure 4.25 faces us with two different granularity levels.
At a fine level Figure 4.25.b shows a similar pattern to Figure 4.25.a, but at
a coarse level we are faced with a U-like shape. One could argue that Figure
4.25.a has an overall straight shape since it leads into one direction at a coarse
granularity level. By contrast, Figure 4.25.b is not straight since it comprises
this U-like shape at a coarse granularity level. This suggests that if we restrict
ourselves to one granularity level, we are then able to derive straightness from
BA-relations. The question then arises whether there are ways in which we can
derive global shape properties, given a polygon which comprises structures at
different granularity levels.
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4.2.1 BA23-courses

It is obviously necessary to consider not merely a pair of disconnected line
segments but a number of such relations simultaneously, as well as their ordering
within the polygon. We refer to this list of relations as the course with respect
to line x:

C(x) ≡ (xΦ
y1

, .., xΦ
yn

) xΦ
yi

∈ BA23, i = 1, .., n (4.2)

Informally speaking, the course of a line is the global orientation of the
polygon from the point of view of that line. More precisely, the orientation of
the polygon relative to x is defined by the positions of all lines of the polygon
with respect to line x. The orientation of the whole polygon with respect to
one of its lines is quite complex, and must be expressed as a list of qualitative
positions — it is generally not possible to express it in terms of single positions
since the global orientation comprises a number of single positions in a special
order. Note that we define the global orientation using a number of positions.

The reference segment forms a local arrangement with those lines to which
it connects at each end, this arrangement describing local orientation informa-
tion. The local orientation of polygons has already been defined using BLT s
and T LT s. Therefore, lines which are adjacent to the reference line are not
considered in a course, with which the global orientation of the polygon is to be
described. We define a course as follows:

Definition 4.4 (Course)
x is line segment of a polygon. We denote its course by C(x) which is defined
as follows: C(x) ≡ (xΦ

y1
, . . . , {}, Id, {}, . . . , xΦ

yn
), xΦ

yi
∈ BA23; i = 1, .., n

Note that it is not necessary to consider the empty relation explicitly in the
following discussion. Definition 4.4 states, once and for all, that no BA-relation
is connected to the reference segment. For simplicity we will therefore write
C(x) = (BOr, Dr, Id, Fr, FOr) instead of C(x) = (BOr, Dr, {}, Id, {}, Fr, FOr).
This is the reason why there are only n−1 BA-relations for the first and for the
last course of an open polygon, and n− 2 relations otherwise, i.e. for 1 < i < n
in an open polygon, or any segment of a closed polygon.

Let us consider the example in Figure 4.25. For the left polygon we obtain
C(x) = (Id, Dr, BOr, Dr, FOr, Dr, BOr, Dr, FOr, Dr), and for the right one
C(x) = (Id, Fl, Fl, Fm, Fr, Fr, Fr, Fr, FOr, Dr). The first example shows the
periodicity Dr, BOr, Dr, FOr. By contrast, the latter example shows how the
course changes its orientation at relation Fm — leading first into a direction
which is forward and left of x, and after Fm steadily backwards and right of x,
until the relation Dr is reached.

The course of a polygon is obtained by taking all courses into consideration:
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Definition 4.5 (Polygonal Course)
P is a polygon. Its course is denoted by C(P ) which is defined by taking simul-
taneously all courses of each line of P : C(P ) ≡ n

i=1 C(xi)

The course of a polygon P is simply P described in terms of all BA23-relations
involved. For Figure 4.25.a we obtain the following polygonal course; each single
course begins with line x:

Id − Dr BOr Dr FOr Dr BOr Dr FOr Dr

− Id − Fr Fr Fm Fr Fr Fr Fm Fr

Dr − Id − Dr BOl Dl FOl Dl BOl Dl

Bl Bl − Id − Fl Fl Fm Fl Fl Fl

Dl FOl Dl − Id − Dr BOr Dr FOr Dr

Br Bm Br Br − Id − Fr Fr Fm Fr

Dr BOr Dr FOr Dr − Id − Dl BOl Dl

Bl Bl Bl Bm Bl Bl − Id − Fl Fl

Dl FOl Dl BOl Dl FOl Dl − Id − Dr

Br Bm Br Br Br Bm Br Br − Id −
Dr BOr Dr FOr Dr BOr Dr FOr Dr − Id

The empty entries, which are filled by the ”−” sign, denote those positions
where the empty relation is; by this means, we arrange the courses above each
other so that a column always refers to the same line segment in P , i.e. one
column i describes all relations of line segment i with regard to all other lines.
Figure 4.25.b is described by the following polygonal course:

Id − Fl Fl Fm Fr Fr Fr Fr FOr Dr

− Id − Dr BOr Br Br Br Br Bm Bl

Br − Id − Fr Fr Fr FOr Dr BOr Br

FOr Dr − Id − Fl Fl Fm Fr Fr Fr

Bm Bl Bl − Id − Dr BOr Br Br Br

BOr Br Br Br − Id − Fr Fr Fr FOr

Fr Fr Fr FOr Dr − Id − Fl Fl Fl

Br Br Br Bm Bl Bl − Id − Dr BOr

Fr FOr Dr BOr Br Br Br − Id − Fr

Fl Fm Fr Fr Fr Fr FOr Dr − Id −
Dr BOr Br Br Br Br Bm Bl Bl − Id

The patterns demonstrated by the two courses are striking. The first exam-
ple shows the periodicity of the polygon in the repeating pattern of positions.
By contrast, in the second example the positions travel halfway around the ref-
erence line, indicating that the whole pattern makes up a kind of arc. But it
must be taken into account that the explanatory power of the course of a single
line is limited; taking the course of one line x, information about the course is
indeterminate whenever adjacent lines have the same relation to x (for instance,
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the forth and fifth columns of the second row in the first course both show Fr).

Definition 4.6 (Course-indeterminacy)
x is line segment of a polygon.

(a) Course-indeterminacy arises if ∃y �=x : xy = xy′ .
(b) The number of relations which are equal and adjacent determines the degree

of indeterminacy.

Course-indeterminacy in C(x) can be compensated for by those lines of the same
polygon which define courses which are not indeterminate at the same positions.
This can be derived from the course of the polygon, i.e. by looking for a line y
which has differing relations in its course C(y) where C(x) is indeterminate.

In the rest of this chapter we will investigate what kinds of global property
can be derived from a polygon’s course.

Changes in direction

In this section possible courses are systematically investigated. For this purpose,
we take the reference system of Figure 3.8 and annotate it with the BA23-
relations, as shown in Figure 4.26. Note that we can use a subset BA13 ⊂ BA23

which comprises only 13 relations, because contains–relations, i.e. the relations
FCl, Cl, BCl, FCr, Cr, BCr, take a course which can be described using a series
of different BA13-relations; for instance, in the configuration space BA13 the
course Cl runs along the relations (Bl, BOl, Dl, FOl, Fl). While it is true that
Cl can be described by (BOl, Dl, FOl), if we are interested in those relations
of BA13 which are somehow related to a contains-relation like Cl (in order
to determine conceptual neighbours, for instance) it is necessary to include
Bl and Fl since Bm and Fm are conceptual neighbours of Cl and of Bl and
Fl but not of BOl and FOl; therefore, (BOl, Dl, FOl) does not describe the
course of Cl appropriately. The same considerations apply to overlap–medial–
relations, such as FOml, FOmr, BOml, BOmr. These ten relations are used only
where they are necessary to specify specific global properties. Figure 4.27 shows
the neighbourhood graph which describes possible neighbours when considering
adjacent line segments in a polygon, i.e. BA-relations which can be adjacent in
a course.

We will now consider courses which have no change in direction, which
change once, and which change twice or more often, in that order, calling our
example polygon P . From the point of view of a line x ∈ P , single directions
refer to those cases where all other lines are at the same position with respect
to x, i.e. for x there exists no change in direction along P . We refer to this case
as a course of grade zero, as indicated by the index:2

2∀y∈P implies that we exclude the direct predecessor and direct successor of the reference
segment x = xi — this is always assumed in the following discussion; otherwise we would
always have to state additionally y �= xi−1 ∧ y �= xi+1 ∧ z �= xi−1 ∧ z �= xi+1.
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Figure 4.26: A line segment defines different qualitative positions which form
the configuration space of courses; for comparison, on the right hand side is the
neighbourhood graph which shows all BA23-relations

C0(x) ≡ ∀y∈P :y �=x∀z∈P :z �=x : xy = xz (4.3)

Provided that it is clear that all lines involved are part of the same polygon
P we can simplify the formula as follows:

C0(x) ≡ ∀y �=x,z �=x : xy = xz (4.4)

Considering courses of grade zero, there are five different directions to be dis-
tinguished, all other directions being symmetric to these five cases: Fm, Fr, FOr,
Dr, and BOr. Figure 4.28 depicts examples of these. In order to concisely char-
acterise a course we simplify these descriptions and write C(x) = Fm instead of
C(x) = (Fm, Fm, Fm, Fm, Fm, Fm), i.e. adjacent relations which are equal can
be deleted in order to describe the overall course regarding a reference line x.

C0(x) can be true for a section of P which starts at line segment v and ends
at line segment w. Accordingly, we can define:

C0(x, v, w) ≡ ∀v≤y≤w,v≤z≤w : xy = xz (4.5)

In fact, by C0(x) we mean C0(x, x′′, xn), with x′′ denoting the successor of the
successor of x, and xn the last line segment of P .

It is of course possible for the polygon to be quite complex in the section
where all lines are equally placed with respect to x. C0(x) states only that
from the point of view of x nothing interesting happens, this viewpoint being
defined by the reference system which is induced by x. That is, C0(x) = Dr

includes a case like that depicted on the left hand side of Figure 4.29, as well
as almost straight polygons similar to the right hand side. On the other hand,
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Figure 4.27: The conceptual neighbourhood graph of BA13

this example shows that C0 = Dr appropriately represents those cases where
there is shape information only to the right of x, level with x, and nowhere
else — which may be exactly what we are interested in. In order to distinguish
the polygons in Figure 4.29 the course of at least one additional line segment
must be considered. That is, it is crucial to know how many courses (and from
which lines) must be taken into account in order to compensate for course-
indeterminacy. In general, this question can be answered only by analysing the
polygon’s course, i.e. every single course of P .

Courses which change their direction once are defined as follows:

C1(x) ≡ ∃w �=x : C0(x, x′′, w) ∧ C0(x, w′, xn) ∧ xw �= xw′ (4.6)

A section for which C1(x, v, w) holds can thus be defined in terms of equation
4.5. Courses which change twice are defined as follows:

C2(x) ≡ ∃w �=x : C0(x, x′′, w) ∧ C1(x, w′, xn) ∧ xw �= xw′ (4.7)

It is actually unimportant whether C1 follows C0 or the other way round;
it is only necessary that C2 contains two changes in direction — a section with
one change, C1, a section without any change, C0, and a change between C1

and C0. Generally, for k changes in direction we can define recursively:

Ck(x) ≡ ∃w �=x : C0(x, x′′, w) ∧ Ck−1(x, w′, xn) ∧ xw �= xw′ , k ≥ 1 (4.8)

A more general definition cuts the polygon at an arbitrary line segment l:

Ck(x) ≡ ∃w �=x : Cl(x, x′′, w) ∧ Ck−l−1(x, w′, xn) ∧ xw �= xw′ , k ≥ 1, l < k (4.9)

Up to now, we have acted on the assumption that we are interested in only
one direction concerning the course of x. The complete polygon can be treated



102 CHAPTER 4. CHARACTERISING POLYGONS QUALITATIVELY

C0(x) = Fm

�x

�
�
�
�
� C0(x) = Fr

�x

�
�
�
�

C0(x) = FOr

�x
�����

C0(x) = Dr

�x  ! ! 

C0(x) = BOr

�x

������������

Figure 4.28: Five different polygons describing five different courses of grade 0
with respect to line segment x

under this assumption only if it holds that x = x1. Otherwise, by our definition
of Ck we have ignored any section of the polygon before line segment x. In
order to consider both the section before line segment x and the section after
it we write Ck(x1, xi−2, xi, xi+2, xn), with reference line x = xi. We must then
distinguish whether the line segments before and after xi are inverse (see chapter
3.2.2) to each other or not:3

Ck(x1, xi−2, xi, xi+2, xn) ≡
(xi−2 = x−1

i+2 ∧ Cl(xi, x1, xi−2) ∧ C0(xi, xi−2, xi+2) ∧ Ck−l(xi, xi+2, xn)) ∨
(xi−2 �= x−1

i+2 ∧ Cl(xi, x1, xi−2) ∧ C1(xi, xi−2, xi+2) ∧ Ck−l−1(xi, xi+2, xn))

with 1 < i < n; k ≥ 0; (0 ≤ l < k) ∨ (l = k = 0) (4.10)
3These actually concerns the predecessor of the predecessor of xi and the successor of the

successor of xi, since the course comprises empty relations for the immediately adjacent lines;
see Definition 4.4.
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Figure 4.29: Two different polygons describing the same course with respect to
line segment x

In the first case the transition via the reference segment, C0(xi, xi−2, xi+2), does
not count as a change in direction, but in the latter case, C1(xi, xi−2, xi+2), it
does. This is because if the segment xi−2 before xi is inverse to the segment
xi+2 after xi there is no change in direction. A change occurs when these two
segments are not inverse relative to each other. Note that for closed polygons
this formula always applies since xi always has predecessors and successors when
the polygon is closed regardless of what i is.

Where we are concerned with the whole polygon we can write simply Ck(x)
which is a convenient abbreviation for Ck(x1, xi−2, xi, xi+2, xn). The position
of the identity relation shows where the reference segment x is. Together with
Definition 4.4 this allows us to say that

Ck(x) = (xΦ
y1

, . . . , xΦ
yn

);xΦ
yi

∈ BA23 ∪ {}; i = 1, . . . , n; k ≥ 0 (4.11)

Equal neighbouring relations can be replaced with a single relation if we are
interested in a more concise description; we then obtain:

Ck(x) = (xΦ
y1

, . . . , xΦ
ym

);xΦ
yi

∈ BA23 ∪{}; i = 1, . . . , m; 1 ≤ m ≤ n; k ≥ 0 (4.12)

Courses have been characterised by their changes in direction, the number
of such changes determining the grade of a course. These definitions can be
summarised:

Definition 4.7 (Changes in Direction)
Given polygon P and course C(x) with x = xi. k changes are defined by:

k = 0 ∧ (i = 1 ∨ i = n) ∧ open(P ) :
Ck(x) ≡ ∀y �=x,z �=x : xy = xz

k ≥ 1 ∧ i = 1 ∧ 3 < j < n ∧ open(P ) :
Ck(x) ≡ Cl(xi, x3, xj) ∧ Ck−l−1(xi, xj+1, xn) ∧ xxj �= xxj+1
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k ≥ 1 ∧ i = n ∧ 1 < j < n − 2 ∧ open(P ) :
Ck(x) ≡ Cl(xi, x1, xj) ∧ Ck−l−1(xi, xj+1, xn−2) ∧ xxj �= xxj+1

k ≥ 0 ∧ (((1 < i < n) ∧ open(P )) ∨ ((1 ≤ i ≤ n) ∧ closed(P ))) :
Ck(x) ≡ (xi−2 = x−1

i+2∧Cl(xi, x1, xi−2)∧C0(xi, xi−2, xi+2)∧Ck−l(xi, xi+2, xn))∨
(xi−2 �= x−1

i+2∧Cl(xi, x1, xi−2)∧C1(xi, xi−2, xi+2)∧Ck−l−1(xi, xi+2, xn))

with (0 ≤ l < k) ∨ (l = k = 0)

Finally, two observations should be made:
(i) Given any course, C(x), all other courses of the same polygon are con-

strained in that the relation of their reference segment to x is already known
and the converse operation, x̆y = yx, can be used to determine the position
of x with respect to all other line segments.

(ii) Where two courses, C(x) and C(y), of the same polygon are incompletely
given, these courses can be completed by composition: if, for example, C(x)
lacks the relation to a line segment z but C(y) includes yz, we can obtain
xz by xz = xy ◦ yz.

Multitude of courses

In order to get an idea of the expressiveness of courses we shall count the number
of different courses which exist for each grade. Using BA12, there are 24 possible
C0 courses, 12 where the reference line is x1 and 12 where it is xn. As soon as
the reference segment x is neither the first line of the polygon nor the last one
there must be at least one change of direction unless the lines xi−2 and xi+2

which enclose the reference segment are inverse to each other (see Definition
4.7).

Where there is a change in direction the local relation controls how many
successive relations exist. This can be seen in the neighbourhood graph in Figure
4.27: for those relations which are wholly contained in one of the six regions,
i.e. for Fl, Fr, Dl, Dr, Bl, and Br, there are two possible successors, and for the
other six relations there are four possible successors. There are thus 3 possible
successors on average.

In the case of C1 we obtain the following courses. For x = x1 or x = xn there
must be a change in direction somewhere between the two, with an average of
three possible directions for any change. As there are 12 possibilities if one
starts with reference segment x1 there are 12 ∗ 3 = 36 courses. The same holds
for reference segment xn, making a total of 2 ∗ 36 = 72 possibilities. When the
reference segment x is somewhere in between, there are 12 ∗ 12 = 144 possible
changes, less those cases for which it holds that xi−2 = x−1

i+2, (of which there are
12, since every relation of BA12 has an inverse), making 144−12 = 132 courses;
the change in direction with Id in between, i.e. ..., xi−2, xi, xi+2, ... is regarded
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as one single change (or as no change if xi−2 = x−1
i+2). From this it follows that

there are 132 + 72 = 204 different courses of grade 1.
How many courses exist for Ck, where k ≥ 1? We have already seen that

there are twelve possibilities when starting or finishing with the reference seg-
ment x. As there are, on average, 3 kinds of changes possible, there are 12 ∗ 3k

courses Ck(x) for each of x = x1 and x = xn, i.e. 2 ∗ (12 ∗ 3k) altogether. For
x1 < x < xn, there are 132 possibilities for a change at the position of x itself
and k − 1 further changes in direction (each one of 3 possible kinds) before and
after x: 132 ∗ 3k−1. Altogether there are 2 ∗ (12 ∗ 3k) + (132 ∗ 3k−1) possible
courses with k changes. The number of courses increases exponentially with
the number of changes involved, and we therefore conclude that the concept
of courses is an expressive means of distinguishing a wide range of polygons,
covering a multitude of variations.

For k = 2 there are 612 courses; their are 1836 for C3 and 5508 courses for C4.
If we include the contains-relations and overlap-relations then there are even
more possibilities. As different relations have a different number of neighbours
we then have to determine a new average for possible changes, in order to obtain
the number of possible courses for any Ck. Furthermore, we have considered
only the number of courses with k changes. We could additionally take into
account all combinations of courses which form different polygonal courses. For
this purpose, the consistency of the courses involved in one polygonal course
can be maintained by the algebraic properties of BA (see chapter 3.2.2 and
(Gottfried, 2004a)).

It is interesting to note that, whereas polygons are frequently analysed and
compared in terms of their number of lines involved, our definition of Ck is
actually independent of the number of lines. This is important since most
global properties, such as straight, angled, round etc., are also independent of
the number of lines involved.

Circulation, scope, extent

BA23-courses have been introduced, as has a simple classification of courses
consisting of determining how often they change their directions. Such changes
have been defined with regard to BA23, i.e. a change in direction corresponds
to a change of a BA23-relation into another one for two adjacent lines with
respect to the same reference line. Considering only the number of changes, the
conclusions which can be derived about a course are quite limited. It would
be more useful to take into account where these changes occur and where the
course runs with respect to the reference line. Such positions are given by the
BA23-relations, but what does a list of twenty (or even many more) relations
tell us? It is obviously necessary to reduce the information load in order to
obtain concise characterisations of polygons.

Each course runs in one or more regions around the reference line and a
simple description of a course consists of determining the area where the course
is to be found. If the course is continuous, there are a number of neighbouring
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Figure 4.30: Circulation directions around a reference line

relations which connect the beginning of the course with its ending, covering a
single connected area. This area can be described by two BA12-relations; the
one which marks the start of the area and that which marks its end. The circular
arrangements of BA-relations allow us to circulate either clockwise or anticlock-
wise around the reference line. Therefore, to follow the area of the course (and
not the area outside it), it is necessary to give the circulation-direction (either
left of the reference line or right of it). This is defined as follows:

Definition 4.8 (Circulation)
x is line segment of a polygon P . The circulation between two neighbouring
lines of P , y and y′, is left of x, in short ρ(xy, xy′) = l, if the path from
the first relation xy to the second relation xy′ runs anticlockwise around x;
otherwise, it is right of x, in short r. If the direction does not change it holds
that ρ(xy, xy′) = ε.

Figure 4.30 shows two examples. On the left hand side the course of x
circulates entirely right of x. On the right hand side it also runs right of x but
it then turns back and runs left of x. For the circulation along a section with
m > 1 lines it holds that

ρ(C(x, y, z)) ∈ {l, r, ε}m−1 (4.13)

For the circulation of the entire course there are three cases to be distin-
guished depending on whether the entire course is open or closed (and, if open,
continuous or interrupted by the reference segment):
1. (a) x = x1 ∧ open(P ) :

ρ(C(x)) = ρ(C(x, x3, xn)) ∈ {l, r, ε}n−3

(b) x = xn ∧ open(P ) :
ρ(C(x)) = ρ(C(x, x1, xn−2)) ∈ {l, r, ε}n−3

2. x1 < x < xn ∧ open(P ) :
ρ(C(x)) = ρ(C(x, x1, xi−2))ρ(C(x, xi+2, xn)) ∈ {l, r, ε}n−4 with xi = x
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3. x1 ≤ x ≤ xn ∧ closed(P ) :
ρ(C(x)) = ρ(C(x, x1, xi−2))ρ(C(x, xi+2, xn)) ∈ {l, r, ε}n−3 with xi = x

For each C0(x) it holds that ρ(C0(x)) = ε since there is no change of cir-
culation direction. For each Ck(x) with k > 0 there is at least one direction
to be mentioned. For example, ρ(FlFOl) = l, ρ(FOlFl) = r, ρ(FlFm) = r,
ρ(FlFOmrBOr) = rr, ρ(FlFOmrFOrFOrDr) = rlr, and ρ(FOlFlIdDrBOr) =
rr. Equal neighbouring directions can be omitted in order to obtain only the
changes, i.e. changes between left and right, or anticlockwise and clockwise, re-
spectively. It then holds that the number of changes between left and right of
ρ(Ck(x)) is less than or equal to k.

We refer to the range through which the course runs as the scope of that
course:

Definition 4.9 (Scope)
x is a line segment of a polygon and C(x) is its course. The entire range of rela-
tions where C(x) runs along is called the scope of the course, in short σ(C(x)).
For r1, r2, r3, r4 ∈ BA12, and ρ, ρ1, ρ2 ∈ {l, r, ε} the scope is defined by

σ(C(x)) ≡
]r1, ρ, r2], x = x1

[r1, ρ1, r2[ ]r3, ρ2, r4], x = xi, i = 2, .., n − 1

[r1, ρ, r2[, x = xn

Note that, taking only r1 and r2, the circulation-direction would be left unde-
cided, since the reference system used is circular. The brackets indicate where
the reference segment is, the scope being open around it. Thus, ]r1, ρ, r2[ de-
scribes the scope of a closed polygon since the reference segment is touched by
both ends of the scope. The scope can also be determined for sections of the
course:

σ(C(x, y, z)) ≡ [r1, ρ, r2], r1, r2 ∈ BA12, ρ ∈ {l, r, ε} (4.14)

For the polygon on the left in Figure 4.30 it holds that σ(C(x)) =]Dr, r, Bm],
and for the one on the right it holds that σ(C(x)) =]FOr, r, Br] =]Br, l, FOr].
The latter shows that the start-relation r1 and the end-relation r2 of the scope
do not necessarily coincide with the first relation and the last relation in the
course.

The scope is of interest whenever it is sufficient to give the position of the
whole polygon with respect to a reference line without explicitly describing the
shape of the course. Note that the start and end are each given by one relation
of BA12(= BA13 \{Id}) but that the scope may include every relation of BA23.
For instance, the two courses FOmr and FlFmFrFOr have the same scope,
namely ]Fl, r, Dr]. In Figure 4.31 we give all possible scopes starting at position
Fl relative to a reference line x and circulating right of x. Each scope describes
which relations of BA23 are realisable with respect to the given reference line.

Attention should be paid to the distinction between ]Fl, ε, Fl] and ]Fl, r, Fl]:
in the first case the course runs only somewhere along Fl, i.e. there is no
need to give a circulation-direction (l or r) since the course does not change
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]Fl, ε, Fl]
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� � ��� ��� �� � ��� ��� ��� � � ]Fl, r, Fr]
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Figure 4.31: The scope of courses regarding a reference line, all starting by Fl

having the direction r; the black circles indicate which relations can hold in the
respective scope

its circulation-direction regarding the reference line; in the latter case it runs
completely around the reference line, and it holds that ]Fl, l, Fl] =]Fl, r, Fl], or
generally:

Dependency 4.1 ∀xy∈BA12 : ]xy, l, xy] = ]xy, r, xy].

Proof: each scope ]xy, ρ, xy] with xy ∈ BA12 and ρ ∈ {l, r} includes all relations
of BA12 since all relations of BA12 are to be visited when running along exactly
one direction from any relation xy around x until returning to the same relation
xy, regardless of whether running left or right around the reference line.

�

The scopes which are described in Dependency 4.1 are also referred to as the
universal scopes since all relations of BA23 \ Id are realisable with these scopes.
As shown in Figure 4.31, the scope ]Fl, r, FOl] is universal. Universal scopes
have the largest possible extent which refers to the number of different relations
passed through by the course:

Definition 4.10 (Extent)
σ(C(x)) is the scope of course C(x) of Polygon P . The distance between the
start-relation and the end-relation of the scope σ(C(x)) is called the extent of
the scope, or simply the extent of course C(x), denoted by η(C(x)). The extent
is determined with the relations of BA12, and it holds that

η(C(x)) ∈ {1, 2, .., 12}
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The extent of the polygon is the average extent of all courses:

η(P ) =
n
i=1 η(C(xi))

n

The neighbourhood graph of BA12-relations, which determines the distance be-
tween the start-relation and the end-relation, is shown on the left hand side of
Figure 4.26. For example, the extent of the scope ]Fl, ε, Fl] is η(Fl) = 1, and for
]Fl, r, BOr] we can see that η(FlFOmrBOr) = 6 (where the extent is obtained
by taking the following relations into account: Fl, Fm, Fr, FOr, Dr, and BOr).
For both polygons in Figure 4.30 it holds that η(C(x)) = 5. Clearly, the extent
of the universal scope is 12.

Finally, it is worth noticing that the scope and extent of a course taken
together form a concise summary of that course; a much greater simplification
than merely putting together equal relations as mentioned earlier.

Coarse relations

We are looking for a way of reducing the information content in order to arrive
at a concise description. This can be achieved by putting together different
BA23-relations which make up the same direction at a coarser granularity level.
Such coarser directions form subsets of BA23. Leaving out the identity relation,
there are 222 = 4194304 possible subsets. Some subsets are particularly useful as
coarse directions; for example, a course may run somewhere left of the reference
line:

Ck(x) = l ≡ ∀y �=x : xy ∈ {Fl, FOl, Dl, Cl, BOl, Bl} (4.15)

Figure 4.32 shows those six relations which are completely left of the reference
line. They combine to 26 = 64 subsets of BA23 which form the basis of several
different courses of different grades, all of them running left of the reference seg-
ment — though the restriction to connected courses in which only neighbouring
relations can follow each other reduces this number.

Ck(x) = r, Ck(x) = F , Ck(x) = B, or other combinations of BA23-relations
can be defined in the same way; especially, front-middle4:

Ck(x) = Fm ≡ ∀y �=x : xy ∈ {Fm, FOml, FOmr, FCl, FCr} (4.16)

and back-middle in the same way; middle is then defined by:

Ck(x) = m ≡ Fm ∨ Bm (4.17)

A course can then be described at a less fine granularity level:

C(x) = (Fm, r,Bm, l, Fm) (4.18)

4Note that the course Fm which we define at the present is to be distinguished from the
BA23-relation Fm. Fm may be part of a course Fm, but does not have to be.
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Figure 4.32: A subset of the neighbourhood graph of BA23 which contains only
relations which are left of the reference line

and
η(Fm, r,Bm, l, Fm) = 12 (4.19)

By this means, complex concepts can be described by fewer relations than when
taking individual BA23-relations. The previous example (4.18) shows how a
course can be represented with the primary intervals enclosing the reference
line. Note that this description is more abstract and less specific than BA since
Fm stands for a number of different relations, such as Fm or FOmr. But it
must be pointed out that each such concise description implies that all relations
involved, coarse or fine, are conceptual neighbours to adjacent relations, since it
is assumed that a continuous curve without any gaps is represented. This is the
reason why there are actually fewer than 222 possible subsets describing coarse
directions.

Having described one curve by atomic BA-relations and another one by
coarse relations, these curves can be compared particularly well using their
scopes. As for atomic BA-relations, the scope of courses which are described by
coarse relations are characterised by BA12-relations.

4.2.2 Global properties

In the last section general characteristics of courses have been discussed. We
will now move on to consider properties of polygons, such as whether a polygon
is convex, a line segment is a global extremum, and the curvature of polygons.
In addition to these general properties, there are also a number of more specific
properties which can be defined on the basis of specific BA23-relations, such as
left-wing and right-wing oriented bends as well as the straightness of polygons.
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General properties

There are a number of properties which can be defined without referring to any
specific BA23-relations involved. In this sense, we refer to such properties as to
general properties.

Curvature
Having introduced the course of a polygon one important property can directly
be derived, namely the polygon’s curvature:

Definition 4.11 (Curvature)
x is a line segment of a polygon P and C(x) is its course.
(a) The curvature of C(x), in short ξ(C(x)), denotes the number of changes

of BA23 concerning adjacent relations in C(x). For Ck(x) it holds that
ξ(C(x)) = k.

(b) The curvature of P is defined as the average of the curvatures of all courses,
i.e. by ξ(P ) = n

i=1
ξ(C(xi))

n .

Dependency 4.2
ξ(C(x)) < n − 2

Proof: as the curvature is defined by the number of changes of BA23 relations
of adjacent line segments, ξ is bounded by the maximum number of possible
changes involved, i.e. by the number of lines involved minus 3 for open polygons,
and n − 4 for closed polygons.

�

By the term curvature we mean a qualitative concept of curvature, such as
the one defined in (Gottfried, 2003b). There, it is argued that T LT s define a
stylised concept of curvature and that curvature information is represented by
two adjacent curvature extrema, i.e. two successive angles on the polygonal con-
tour. Instead of using single metrical curvature-values at each contour point, we
are then concerned with extensive curvature information, being expanded over
more or less long contour segments. This becomes particularly useful when deal-
ing with sketches where small, metrical curvature-values often reflect accidental
properties, whereas necessary properties in sketches correspond more closely to
qualitative curvature-relations. Examined in terms of BA-relations the concept
of qualitative curvature information is the same as for T LT s.

Extremum
A global extremum is a line segment x with its course being completely on the
left, on the right, in the front, or in the back. Before considering this, we have to
discuss the convexity of polygons. For this purpose, we assume an anticlockwise
orientation of a simple, closed polygon P .
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Definition 4.12 (Convexity)
P is a polygon. A closed and simple polygon is convex, for short C(P ), if for two
arbitrary points contained in the interior of the polygon it holds that the straight
line which connects these points is wholly contained in the polygon. Otherwise
the polygon is concave.

It then holds

Dependency 4.3
C(P ) ⇔ (∀x∈P : ∀y∈P : y �= x ⇔ xy = l)

Proof: reduction on the triangle orientation: for three adjacent points of a
convex polygon P , the first two points define a line while the third point lies
left of this line, as does each following point. As two adjacent points define a
line segment x, and since two arbitrary following points, which define another
line segment y, both lie left of x, so does line segment y; i.e. for each pair of
lines x and y of P it holds that xy = l.

Conversely, if xy = l for each pair of lines of P the same holds for the
endpoints of x and y, which defines the convexity on the triangle orientation for
three points of P .

�

Definition 4.13 (Convex Hull)
P is a polygon. The convex hull of P , in short CH(P ), is the most minimal
simple convex polygon that completely covers P .

Note that line segments of P may lie on the boundary of CH(P ) since P is
covered by CH(P ) and not included as a proper part; this is denoted by x ∈
CH(P ). For such line segments as well as for some other line segments we define:

Definition 4.14 (Global Extremum)
x is a line segment of a polygon P . x is said to be a global extremum of P , for
short ζ(x), if C(x) = d with d ∈ {l, r, F, B}.

It then holds that any line segment x of any polygon P , which simultaneously
lies on the convex hull of P , is an extremum:

Dependency 4.4
∀x∈P : x ∈ CH(P ) ⇒ ζ(x)

Proof: CH(P ) is the minimal convex polygon which completely covers P . For
convex polygons Dependency 4.3 holds, and all line segments of P which are
not part of CH(P ) lie in the interior of CH(P ), i.e. left of any line segment of
the anticlockwise oriented convex hull. Therefore,

∀x∈CH(P ) : ∀y∈P : x �= y ⇔ xy = l

Taken together with Definition 4.14 ζ(x) follows.
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�
Line segments of CH(P ) which are not part of P behave like extreme line seg-
ments with respect to P .

If the course of x is C(x) = B or C(x) = F this course may change from
left to right and from right to left; in such cases it holds that x is a global
extremum, but it may additionally hold that x /∈ CH(P ). This is the reason
why Dependency 4.4 is unidirectional.

Another observation concerns the relationship between an extremum and
the extent of its course:

Dependency 4.5
η(C(x)) = 1 ⇒ ζ(x)

Proof: if η(C(x)) = 1 the rest of the polygon has to be either somewhere left
of or right of x, or in front of x or in the back of x, i.e. it then holds that
C(x) ∈ {l, r, F, B}; together with Definition 4.14 it then holds ζ(x).

�
Conversely, ζ(x) does not necessarily imply that η(C(x)) = 1, but it does hold
that:

Dependency 4.6
ζ(x) ⇒ η(C(x)) ≤ 5

Proof: by Definition 4.14 ζ(x) implies C(x) ∈ {l, r, F, B}. For C(x) ∈ {l, r} the
course of x runs either completely left of x or right of it; it then holds that η(x) ≤
5 because there are at the most 5 relations, i.e. C(x) ⊆ {Fl, FOl, Dl, Cl, BOl}∨
C(x) ⊆ {Fr, FOr, Dr, Cr, BOr}. For C(x) ∈ {F, B} the course of x is com-
pletely in the front of x or behind it; in this case it holds that η(x) ≤ 3 because
C(x) ⊆ {Fl, Fm, Fr} ∨ C(x) ⊆ {Bl, Bm, Br}. Therefore, the extent of any ex-
treme line segment cannot be greater than 5.

�
Dependency 4.6 is not bidirectional since η(x) ≤ 5 does not necessarily imply
ζ(x). If C(x) = FOlFlFmFrFOr, for example, the extent is 5, but x is not an
extremum. Closely related to Dependency 4.6 is the extent of the convex hull:

Dependency 4.7
η(CH(P )) ≤ 5

Proof: each line segment x of CH(P ) is an extremum with respect to P : either
because it is part of P (Dependency 4.4) or P lies completely left of x (Defin-
ition 4.13 and Dependency 4.3). As Dependency 4.6 shows it then holds that
the extent of any line segment of CH(P ) must be less than or equal to 5. Con-
sequently, taking the average extent of all courses of the convex hull (Definition
4.10) we obtain η(CH(P )) ≤ 5.

�
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Reversal
In this section two different kinds of changes are distinguished. Supposing a
continuous curve, each change from direction xy to direction xz corresponds to
a change according to the conceptual neighbourhood graph (Figure 4.27), i.e. xy

and xz are conceptual neighbours. For three or more such adjacent changes we
want to distinguish whether the course circulates around the reference line with-
out changing its direction from left to right or right to left, or whether the course
includes reversals. Such reversals exist if at least one relation repeatedly appears
with one other relation occurring between repetitions, and without completely
running around the reference segment. For example, C4(x) = FrFOrDrFOrFr

comprises a reversal since the relation FOr appears twice with the relation Dr

in between, and the course has not run around x in the meantime.

Definition 4.15 (Reversal)
x is a line segment of a polygon and C(x) its course. If C(x) comprises at
least two sections which run in different directions regarding x, C(x) contains a
reversal, and it holds 	(C(x)).

It can then generally be stated that it holds that:

Dependency 4.8
	(C(x)) ⇔ ∃u�=x,v �=x,w �=x(u < v < w ∧ xu �= xv ∧ xu = xw ∧ η(C(x, u, w)) < 12)

Proof: u, v, and w are unequal to x, and u < v < w ensures an ordering
so that there is a section, s, of the course C(x) which consists of at least three
line segments. As it holds that xu �= xv there is at least one change in direction
in s while xu = xw ensures that the first direction in s is again satisfied at the
end of s. The course of s must have been turned backwards in the meantime
since it holds that the extent of s, i.e. η(C(x, u, w)), is less than the extent of
the universal scope.

�

Note that 	(Ck(x)) does not necessarily indicate that k < 12 since the
course may run completely round x, the course reversing in the meantime at
least two times. Examples of courses without reversals from the viewpoint of
line x are depicted in Figs. 4.28 and 4.33. The lower part of Figure 4.33
shows the distinction between reversals and changes in the circulation-direction
(clockwise or anticlockwise orientation) of courses. In this example it holds
that there is no reversal, though C(x) = FOrDrBOrBr expands to C(x) =
FOrFOrFOrFOrFOrDrDrBOrBrBr and it holds that ρ(FOrFOrFOrFOr

FOrDrDrBOrBrBr) = rlrlr. These changes are the consequence of adjacent
FOr-relations. This also shows that reversals form a special case of circulations
which we have defined above in the context of scopes. Further specific kinds of
circulations could be defined.

Examples of courses with exactly one reversal with respect to x are depicted
in Figure 4.34. As the left hand side of Figure 4.29 shows, changes in direction



4.2. GLOBAL ORIENTATION 115
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Figure 4.33: Polygons without reversals from the point of view of x
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Figure 4.34: Polygons with reversals

of a polygon cannot always be deduced from single courses. It is necessary to
test all courses of a polygon, i.e. a polygon contains one reversal only when at
least one course of it includes one.

Specific properties

In addition to those global properties which are general in that they are definable
without referring to any BA23-relations5, there are infinitely many conceivable
properties which are definable in terms of specific BA23-relations — in fact, each
course can be regarded as a specific property.

Bend
The first example concerns two special cases for an extreme line segment, namely

5Note that the definition of an extremum refers only to general directions like l, r, F, B,
and not to specific BA23-relations.
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left-wing oriented and right-wing oriented bends, describing components which
frequently occur, having a U-like shape. Assuming a polygon which approxi-
mates a smooth curve, a left-wing or right-wing oriented bend is distinguished
by a number of courses with the reference segment being an extreme line seg-
ment and the rest of the course lying either completely left of the reference
segment or right of it.

C(x1) = Fr; C(xk) = BrIdFr, k = 2, .., n − 1; C(xn) = Br

��x1

�# $�
� xn

Figure 4.35: A shape with a right-wing oriented bend

Definition 4.16 (Bend)
A polygon which describes a left-wing or right-wing oriented bend is denoted by
υl(P ) and υr(P ), respectively, and we define
(a) υl(P ) ≡ C(x1) = Fl ∧ ∀n−1

k=2 : C(xk) = BlIdFl ∧ C(xn) = Bl

(b) υr(P ) ≡ C(x1) = Fr ∧ ∀n−1
k=2 : C(xk) = BrIdFr ∧ C(xn) = Br

This definition applies also to sections and, as such, a polygon can be charac-
terised by its left-wing and right-wing oriented bends.

The extent of the scope of an intermediate line xk in a bend is 2 because there
are only the relations Bl and Fl, or Br and Fr involved in a bend, i.e. for υl(P )
we obtain σ(C(xk)) = [BlεBl[ ]FlεFl] and η(C(xk)) = η(Bl)+η(Fl) = 1+1 = 2.
The curvature of such a polygon is always 1 for an intermediate line and zero
otherwise.

Straightness
The second example of a special global property concerns the straightness of
polygons. Each course of grade 0, i.e. each arbitrary C0(x), is locally straight
from the point of view of line segment x. Furthermore, there are a number of
courses which are also straight, and where the reference line x is not at either
end, (i.e. x1 < x < xn), and these courses are also of grade zero, i.e. x1 = x−1

n .
In particular the following courses may be classified to be straight:

C0(x) ∈ {(Fl, Id, Br), (Fm, Id, Bm), (Fr, Id, Bl), (Dl, Id, Dr)}6 (4.20)

and the reverse of each. Depending on the length of the section which is straight
in a course, one course can be said to be either more or less straight than another.

6It is probably useful to define further courses as straight — FlIdDr, for example.
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Definition 4.17 (Straight)
x is a line segment of a polygon and C(x) is its course. C(x) is straight, for
short ι(C(x)), if C(x) = C0(x).

A polygon is globally straight if all its courses are straight. Courses which are
not straight are referred to as curved. Curved courses can be compared in order
to classify one course as less straight (identically, more curved) than another
one, depending on the number of courses which are straight. In accordance with
equation 4.5, sections can be defined as straight or curved. Hence, it is possible
to characterise polygons by determining their straight and curved sections and
by determining which sections are less straight than others. Rather than having
two definitions of straightness and curvature, these concepts form a continuous
dichotomy, and in addition to determining the straightness of a single polygon
it can be determined which of two polygons is less straight.

Note how straightness is related to changes in direction, as defined by De-
finition 4.7. In the same way that changes in direction only appear if the line
segments around the reference line are not inverse to each other, the inverse
relation is used in order to define straightness. That is to say, a polygon is
straight when there is no change in direction involved.

4.2.3 Summary

Qualitative global properties have been introduced in the current section. These
properties are based on the same reference system (section 3.1.1) as the interval
relations (chapter 3) and local properties (section 4.1). Local properties concern
local orientation information which can be completely described by a fairly small
number of relations, namely BLT and T LT relations.

By contrast, global orientation information is not so simple to encode. The
course of a polygon completely describes its global orientation properties, but
the course may be quite large, making it difficult to see its properties directly.
This distinguishes local from global properties: there are a fairly small num-
ber of local but infinitely many global properties; the former confined to an
arrangement of two or three lines, the latter made up of at least four lines but
having no upper limit on the number of lines involved. Therefore, a number of
characteristics have been defined which describe courses, making explicit global
polygonal properties. Relations between these properties have been identified
by a number of Dependencies. Table 4.1 summarises the properties which have
been discussed.

Having defined different polygonal properties which could apply to particular
parts it is useful to relate parts with special properties to other parts. This allows
us to distinguish, for instance, two polygons which comprise the same straight
or curved sections in the same ordering but are still different from a global
perspective. Such parts or sections can be related using BA23-relations. In
particular, it is sometimes possible to describe the scope of a course in a concise
way, taking coarse relations as introduced in section 4.2.1. Coarse relations can
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Table 4.1: Global properties of polygons

Property Notation Meaning
Curvature ξ number of changes regarding BA23

Scope σ range of relations around the reference line
Extent η number of BA13-relations which cover σ
Extremum ζ C(x) runs wholly left, right, front, or back of x
Bend υ P makes up a left- or right-wing oriented bend
Reversal 	 C(x) changes its direction regarding x
Straightness ι C(x) is straight

be related by BA23-relations in order to describe their relative position, and
as polygonal properties may also be described by local orientation information,
i.e. by BLT s or T LT s, it may also be useful to relate local properties relative
to each other with BA23-relations, or even to describe the position of local
properties relative to global properties. For instance, having identified for two
curves P and Q that there are two extreme segments, ζ(x) ∧ ζ(y) in each, we
may distinguish P and Q by identifying that xy = Dr ∧ yx = Cl for P and that
xy = Fr ∧ yx = Bl for Q, i.e. P and Q both comprise two extreme segments but
these segments are differently related to each other in P and Q.

Let us describe the two polygons in Figure 4.36 by qualitative global prop-
erties. We will call the polygon on the left hand side P1 and the other one P2.
For P1 and P2 we obtain the properties described in Table 4.2 and Table 4.3,
respectively. This shows that these global properties allow us to distinguish P1

and P2, which is not possible by means of local properties: the curvature of P1

is lower than the curvature of P2, the scopes of P1 are open while those of P2

are all closed, the extent of P1 is much lower than the extent of P2 (the latter
being more than half the extent of the universal scope), P1 has two extreme
segments but P2 has none, neither P1 nor P2 include bends or reversals, and P1

is straight by contrast to P2.
The loop on the right hand side of Figure 4.21 shows an example of a polygon

with reversals. C(z) on the left hand side of Figure 4.24 shows an example of
a right-wing oriented bend. The set of properties which have been defined
may be extended with further more or less specific properties which are already
inherent in the BA23-courses. Depending on the given application domain it
may be useful to make more of them explicit.

Finally, we must point out that we have restricted ourselves to the consid-
eration of orientation information and positional information in order to char-
acterise polygons qualitatively. The definitions of global properties are further
limited to positional information only, leaving out the orientation of line seg-
ments as well as their length. In this way, a number of qualitative properties
have been defined which are fundamental in that they are confined to one di-
mension, namely positional information. Further properties, which are more
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Figure 4.36: Two polygons which are locally equal since they are only made up
by T LT 6(6)-relations, but have differing global properties

constrained, can now be defined on the basis of these positional relations, tak-
ing into account the orientation and length of line segments.
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Table 4.2: Global properties of P1

P1

Curvature

∀n
i=1 : ξ(C(xi)) = 0 ⇒ ξ(P1) = n∗0

n = 0

Scope

σ(C(x)) =

]Fr, ε, Fr], x = x1

[Br, ε, Br[ ]Fl, ε, Fl], x = xi, i = 2, .., n − 1 ∧ even(i)

[Bl, ε, Bl[ ]Fr, ε, Fr], x = xi, i = 2, .., n − 1 ∧ odd(i)

[Br, ε, Br[, x = xn

Extent

η(C(x)) =
1, x = x1 ∨ x = xn

2, else ⇒ η(P1) = 9
5 = 1.6

Extremum

ζ(C(x1)) ∧ ∀n−1
i=2 : ¬ζ(C(xi)) ∧ ζ(C(xn))

Bend

¬υ(P1)

Reversal

¬	(P1)

Straightness

ι(P1)
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Table 4.3: Global properties of P2

P2

Curvature

∀n
i=1 : ξ(C(xi)) = 5 ⇒ ξ(P2) = 5∗n

n = 5

Scope

σ(C(x)) =
]Fl, r, Br[, x = xi, i = 1, .., n ∧ even(i)

]Fr, r, Bl[, x = xi, i = 1, .., n ∧ odd(i)

Extent

∀n
i=1 : η(C(xi)) = 7 ⇒ η(P2) = 7

Extremum

∀n
i=1 : ¬ζ(C(xi))

Bend

¬υ(P2)

Reversal

¬	(P2)

Straightness

¬ι(P2)
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4.3 Combining local and global orientation

Local and global orientation information have been treated separately. Since
they describe different aspects, they complement one another and it is time to
consider them together. Figure 4.37 shows two polygons which are locally equal
and globally different. This can be read off the matrices, the diagonal indicating
local properties, i.e. T LT s, the rest of the matrix global properties, i.e. BAs.
The polygon on the left hand side is described by the following matrix (in which
singularities are ascribed to specific relations):

14 − Fl Fl Dl Bl Bl −
− 14 − Fl Fl Dl Bl Bl

Bl − 14 − Fl Fl Dl Bl

Bl Bl − 14 − Fl Fl Dl

Dl Bl Bl − 14 − Fl Fl

Fl Dl Bl Bl − 14 − Fl

Fl Fl Dl Bl Bl − 14 −
− Fl Fl Dl Bl Bl − 14

For the polygon on the right hand side of Figure 4.37 we obtain:

14 − Fl FOl Dl BOl Bl −
− 14 − Fl FOl Dl BOl Bl

Bl − 14 − Fl FOl Dl BOl

BOl Bl − 14 − Fl FOl Dl

Dl BOl Bl − 14 − Fl FOl

FOl Dl BOl Bl − 14 − Fl

Fl FOl Dl BOl Bl − 14 −
− Fl FOl Dl BOl Bl − 14

� �

��

� ��

�
�

�
�

Figure 4.37: Two examples for T LT 6(14)-contours
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Figure 4.38: Three left-wing oriented bends

When reconciling local and global orientation information it makes sense to
use T LT 36 because tripartite line tracks fill the gap around the reference line
in the BA-matrix, T LT 36-relations are oriented like BAs, and the orientation
grid is used as a reference system for both BAs and T LT s. In the following we
omit the index 36. In order to demonstrate how T LT s and BAs complement
each other we will analyse first convex and then concave shapes.

4.3.1 Convex arcs

Convex arcs frequently occur as convex shape parts. Therefore, it is useful to
be able to distinguish different kinds of convex arcs qualitatively. Current qual-
itative shape approaches lack suitable means for distinguishing different convex
shapes. (Cohn, 1995) proposes a qualitative shape description which is based
on the idea of characterising a shape by its concavities. Each concavity in turn
is recursively described by its own concavities. This approach treats all convex
shapes as equal. Describing polygons using the triangle orientation of vertices
(Schlieder, 1996) is unable to distinguish different convex shapes either. The
same holds for the approach of (Galton & Meathrel, 1999) who treat all poly-
gons with the same number of sides as being equal. They propose to annotate
their description with indices denoting the relative length of line segments, and
this could also be done for angles. This is an obvious possibility, and has also
been suggested by others, such as (Jungert, 1993) whose method cannot distin-
guish more different convexities without this extension than T LT s. But such
extensions have the disadvantage that measurements are required in order to
obtain quantitative information for the purpose of comparing the size of angles
or the length of sides. In some cases (especially sketches) such quantitative
measurements are not very robust and it would be preferable, if possible, to dis-
criminate different convex shapes from their qualitative properties alone. This
possibility is what we will investigate now. For this purpose, we have to iden-
tify which properties convex parts have in common and in which respects such
polygons can be changed without loosing their convexity.

Two polygons cannot be distinguished if their line segments are equally
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Figure 4.39: Two convex arcs

arranged. It is therefore necessary to consider what kinds of different line
arrangements can make up convex polygons. Figure 4.38, for example, shows
three convex arcs. They share the same description, that is, they are equal
in terms of positional relations, and they all describe left-wing oriented bends.
By Definition 4.16, a bend is described by C(x) = Fl ∧ C(z) = Bl and for all
intermediate line segments it holds that C(y) = BlIdFl. As soon as orientation
relations between line segments are incorporated the arcs can be distinguished
since for the left arc it holds that xφ

z = Fl whereas for the right one it holds that
xφ

z = Bl. The arc in the middle lies exactly at the transition between these two
cases.

When we restrict ourselves to positional relations differences between two
convex arcs have to be larger in order to distinguish them. For an example
see Figure 4.39. For the left polygon it still holds that xz = Fl but for the
right one it now holds that xz = Dl. In order to systematically consider what
kinds of convex arcs exist which can be distinguished by positional relations we
need only to enumerate all possible convex polygons. Since these examples deal
with open polygons, we could consider the start points to be connected to the
endpoints in order to be able to apply Definition 4.12. Dependency 4.3 then
holds, i.e. every line is left of every other one.

Since we are considering only arcs and not arbitrary convex parts, locally
only T LT (3) relations are used. The simplest convex arcs are shown in Figure
4.40. Their descriptions start with the line segment on the right hand side of
each polygon. A third class of arcs is asymmetric, as shown in Figure 4.41. An
arbitrary arc can be constructed from more than three line segments. Such arcs
either belong to one of those three classes where the order of Fl, FOl, BOl, and
Bl relations is the same as in the examples of Figs. 4.40 and 4.41, or are more
sophisticated polygons constructed from these in the correct order. These follow
from the combinations of relations in 4x4-matrices, all of which are shown in
Figure 4.42. In addition to the different convex arcs which can be identified by
qualitative line arrangements, different closed convex shapes (Figure 4.37) can
also be distinguished.
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Figure 4.40: Four convex arcs belonging to two different classes

4.3.2 Convex shapes

Having discussed convex arcs we now turn our attention to closed convex shapes.
The convex shape with the highest degree of symmetry is a circle. The symme-
try of a circle-like polygon can even be deduced from positional relations. The
polygon on the left hand side of Figure 4.43 is described by the following matrix
where again singularities are ascribed to specific relations:

14 − Fl Fl Dl Bl Bl −
− 14 − Fl Fl Dl Bl Bl

Bl − 14 − Fl Fl Dl Bl

Bl Bl − 14 − Fl Fl Dl

Dl Bl Bl − 14 − Fl Fl

Fl Dl Bl Bl − 14 − Fl

Fl Fl Dl Bl Bl − 14 −
− Fl Fl Dl Bl Bl − 14

Running anticlockwise around this polygon for each line segment we obtain the
following course: 14FlFlDlBlBl. The columns of the matrix show the same
pattern indicating the high symmetry of this polygon.

As Dependency 4.3 states, for any two lines x and y of a convex polygon it
holds that xy = l ∈ {Fl, FOl, Cl, Dl, BOl, Bl}. Therefore, other convex poly-
gons are obtained by using only these relations. To avoid having any concavities
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Figure 4.41: An asymmetric convex arc
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Figure 4.42: Matrices of convex arcs which are made up of four line segments
— all possible variations from the point of view of the first line segment

each course has to take the form F+
l FO∗

l C∗
l D∗

l BO∗
l B+

l , meaning that at least
one Fl-relation is needed and one Bl-relation, and that a number of overlap-,
contains-, and during-relations can be in between the Fl and Bl relations. Vary-
ing this pattern of relations we are able to describe different convex shapes. Let
us consider how we then distinguish roundish from elliptical shapes.

The elliptical shape on the right hand side of Figure 4.43 is described by:
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Figure 4.43: A polygonal circle and an ellipsoidal shape

1 2 3 4 5 6 7 8 9 10 11 12

1 14 − Fl Fl Fl Fl Dl Bl Bl Bl Bl −
2 − 14 − Fl Fl Fl Fl Fl FOl BOl Bl Bl

3 Bl − 14 − Fl Fl Fl Fl FOl BOl Bl Bl

4 Bl Bl − 14 − Fl Fl Fl Fl Dl Bl Bl

5 Bl Bl Bl − 14 − Fl Fl Fl FOl BOl Bl

6 Bl Bl Bl Bl − 14 − Fl Fl FOl BOl Bl

7 Dl Bl Bl Bl Bl − 14 − Fl Fl Fl Fl

8 Fl Fl FOl BOl Bl Bl − 14 − Fl Fl Fl

9 Fl Fl FOl BOl Bl Bl Bl − 14 − Fl Fl

10 Fl Fl Fl Dl Bl Bl Bl Bl − 14 − Fl

11 Fl Fl Fl FOl BOl Bl Bl Bl Bl − 14 −
12 − Fl Fl FOl BOl Bl Bl Bl Bl Bl − 14

By contrast to the symmetrical matrix of the circle the courses of the ellipse
differ. For instance, from line segment two to line segment six the number of line
segments which are in the front-left of the reference segments decreases while
the number of Bl-relations increases. This indicates the asymmetry of the shape
from the point of view of different reference lines for which the balance of Fl-
and Bl-relations changes.

Another obvious distinction concerns the number of overlap- and during-
relations which are above each other in the columns of the matrix. Each column
states in which relation one line segment is with respect to all other lines. Line
segment four and line segment ten are each in five such overlap- and during-
relations, again indicating a kind of asymmetry — that the shape is flatter at
these two segments. This can be explained by the fact that a line is more often
in an overlap or during relation when there are a number of lines opposite to
it, surrounding it partly from the opposite, thereby inducing orientation grids
relative to which the line in question is in overlap- or during-relation — i.e. if
it is situated at a flattened section in a convex, ellipsoidal shape. For line four
these line segments are lines 8 to 12. By contrast, line two is not surrounded in
such a way but is lying, in a sense, out of the way.
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In summary, it is obviously possible to distinguish between symmetrical and
asymmetrical convex shapes. Furthermore, asymmetrical convex shapes with
flattened sections can be identified. We will now investigate how T LT s and
BAs can be used together notably qualified in order to describe concave shapes.

4.3.3 Concave shapes

Concavities can be identified as concave by local orientation information, i.e.
by T LT s. That is, the set of T LT s divides into two equivalence classes, one
containing concave and the other one containing convex T LT s. The following
T LT s are convex:

T LT (1), T LT (2), T LT (3), T LT (7), T LT (8), T LT (9), T LT (14), T LT (15)

All remaining T LT -relations are concave. Note that a convex shape will consist
entirely of convex T LT s, although not every combination of convex T LT s
produces a convex polygon. For example, each closed polygon which contains
the convex T LT (7)-relation has at least one concavity.

From this it follows that all concavities of a polygon can be read off the diag-
onal of its matrix. This allows us, when characterising a polygon, to efficiently
find those matrix-entries which are crucial in distinguishing both the concav-
ities it contains and their relative positions. This principal is demonstrated
particularly well by the set of shapes depicted in Figure 4.44.

These shapes are all made up of two convex parts and two concavities which
are of similar size. (Galton & Meathrel, 1999) use these shapes to demonstrate
the limitations of their approach. All these shapes have the same description,
namely ⊃≺⊃≺. For the purpose of applying our description to these shapes
we have to approximate them with polygons. Using the simple approximation
algorithm of (Douglas & Peucker, 1973) we obtain the shapes in Figure 4.45.
The differences between the original outlines and their polygonal approximations
are shown in Figure 4.46.

The shapes are different in that the arrangements of notches differ. Describ-
ing these different arrangements would allow to distinguish these shapes. For
the purpose of showing these differences the shapes have been magnified for

Figure 4.44: Similar concave shapes; Fig. 4 from (Galton and Meathrel, 1999)
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Figure 4.45: The polygonal approximations of the shapes of Figure 4.44

Figure 4.46: The difference between the original outlines and their polygonal
approximations, i.e. an overlay of Figure 4.44 and Figure 4.45

Figure 4.47 in order to better display the relative positions of notches.

Figure 4.47: The shapes and the arrangements of their notches

In all shapes both concavities are described by T LT (5, 27) with the ex-
ception of Q and T which instead have one concavity with T LT (5, 26) and
T LT (11, 27), respectively — but note that T LT (26) is conceptual neighbour
of T LT (27) and T LT (11) of T LT (5), meaning that these primitives have sig-
nificant similarities (see Figure 4.10 and (Gottfried, 2003b)). All convex parts
are described by chains of T LT (3)-relations, with the exception of Q and T
which also have a T LT (2) and T LT (9)-relation, respectively, which are both
conceptual neighbours of T LT (3) (see Figure 4.10) and which are also both
convex.
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For each shape the relative position between the two concavities can be
described by taking the lines with the local context of T LT (5) in place of the
concavity (and in one of the two cases of polygon T by T LT (11)). We denote
one of the concavities of each shape by x and the other by y. Their relative
position is as follows:

P : xy = FOr ∧ yx = BOl

Q : xy = Fr ∧ yx = BOl

R : xy = Fr ∧ yx = Fr

S : xy = Fl ∧ yx = Fl

T : xy = Fr ∧ yx = Fl

By this means we may put P, Q, and T in one equivalence class, and R and S in
another one. In the first class all concavities are approximately near each other,
being on the same side, as far as one is disposed to consider side-like sections in
a roundish shape. This derives from their positions: one concavity is left of the
other one, whereas the other one is right of the former one. By contrast, for R
and S the concavities are opposite to each other, i.e. they are on different sides.
This can be derived from their relative positions which are for both points of
view equal regarding the left-right dichotomy. In R each concavity is relatively
right of the other one, and in S they are left of each other.

R and S can be distinguished as follows. The concavities of R are somehow
shifted relative to each other, whereas those of S are opposite to each other,
and almost point to each other. Denoting the first T LT (27)-component by x′

and the second one by y′ (compare Figure 4.47) for R it holds that

xy xy′

x′
y x′

y′
=

Fr Fr

Bl Bl

yx yx′

y′
x y′

x′
=

Fr Fr

BOl BOl

The changes of left and right between the rows reflect the shift of concavities.
By contrast for S it holds that

xy xy′

x′
y x′

y′
=

Fl Fl

Bl Bl

yx yx′

y′
x y′

x′
=

Fl Fl

Bl Bl

In this case there is no change between left and right (compare the orientations
of the components of the concavities). Taking these relations for P and Q they
cannot be distinguished. But at least T is slightly different from P and Q
regarding these relations. This corresponds to the asymmetric curvature of T
whereas there is an arc-like convexity in P and Q.

Q and T are quite similar, as both have a small convex part which overhangs
relative to the rest of the outline. This can be comprehended very well if rotating
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T so that its small convexity is also at the top regarding the picture-plane. The
difference in curvature of these convex parts can be derived by the relations
which characterise these convexities. Half of them in T are overlap-relations
whereas there are only two overlap-relations in the corresponding, less curved,
part of Q.

Finally, P and Q can be distinguished by the central convex parts at the top.
In P this part is smaller than the one in Q, i.e. it is approximated by fewer lines.
Additionally, in P this part is inside the convex hull of the outlines whereas it is
lying on the convex hull in Q. This can be derived from its position relative to
the rest of the polygon. From the viewpoint of the upper part of the convexity
in Q the rest of the outline is completely left of it, indicating that this part lies
on the convex hull of the shape. This does not hold for the corresponding part
in P which is slightly imbedded in the outline. The same considerations allow
us to distinguish P and T .

The described method generalises to arbitrary concave shapes. Recognising
concavities by local properties, i.e. by T LT s, these concavities can be related
to one another with respect to global properties, i.e. by BAs.



Part III

Evaluation



Chapter 5

Applying qualitative line
arrangements

A qualitative representation and calculus for line arrangements has been in-
troduced. In particular, we have investigated how this representation allows
qualitative descriptions of polygons, forming a concise means of representing
shapes’ boundaries. We shall now discuss characteristics of this representation
which are related to coarse shape approximations (which maintain only specific
global shape properties). We do this by employing our approach to graphically
query for images. Such graphical queries are to be sketched by the user who
will be looking for objects with specific characteristics. These characteristics are
outlined at a coarse granularity level by the user, who is capable of sketching
the desired shape only roughly. We will show that qualitative line arrangements
allow us to represent these characteristics well enough to use them in querying
for similar objects.

Collections of objects d’art, historical tools, or natural objects such as fos-
silised plants and animals can be found in a wealth of museums and private
collections. There are several reasons why people might be looking for such
objects: historians investigate the past and track the development of things,
art dealers have to serve their customers, designers are looking for stimulation,
and so on; there is also the art connoisseur who just appreciates the peculiarity
of such objects. In particular, the visual appearance of objects is sometimes
important, and may therefore be an appropriate starting point in searching for
particular objects. Tools which provide a means for visually querying for objects
contained in a collection are then necessary.

From the technical point of view there are two main challenges such a system
has to cope with. Firstly, objects which belong to the same category (and which
therefore have quite a similar appearance to each other) need to be distinguished.
These will, however, obviously differ in some characteristics to which the expert
attaches great importance. Secondly, these characteristics are to be specified in
a simple but reliable way. There is, necessarily, a trade-off between similarity
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and variety, the latter relating to those characteristics which are important only
to the expert. That is, these characteristics concern those properties that the
expert is particularly looking for, and as a consequence which he will take care
to specify graphically. It is therefore reasonable to assume that these properties
involve perceptually aided distinctions. In this way, we are faced with collections
of objects which are similar in that they belong to the same category, but which
simultaneously possess perceptually distinct features. In this chapter we will
devote our attention to such a collection of objects.

5.1 The Bamberger wax apples

The Bamberger Naturkundemuseum owns a two-hundred-year-old collection of
malaceous and stone fruits which were brought to Bamberg in 1803 from the
secularised monastery Banz by the first curator of the Bamberger Naturkunde-
museum, the Benedictine pater Dionysius Linder. Figure 5.1 shows a part of
this collection. These wax fruits were manufactured and sold by the Landes-
Industrie-Comptoir of Bertuch (1747-1824). Friedrich Johann Justin Bertuch
was a writer, publisher, and distributer, and owned a number of factories, be-
ing a consummate entrepreneur with both commercial and literary ambitions.
In the late 18th century Bertuch was both the richest man in Weimar and the
largest employer in the region (Kaiser & Seifert, 2000). It is therefore not
surprising to encounter the name of Bertuch while studying the products of the
18th century in terms of both objects d’art and commercial products. Bertuch
was mainly interested in journal publishing, but his factories produced and sold
a variety of things from luxury goods to mass produced art works, including
artificial flowers and collections of wax fruits.

The initiator of the production of wax fruits was the priest Johann Volk-
mar Sickler (1741-1820), a leading pomologist1. Sickler edited journals about
fruit-growing and orchards, and was author of the journal Der teutsche Obst-
gärtner in which he described the most prominent fruit types. In addition to
this, three-dimensional wax models were manufactured (see Figure 5.1) in order
to complement drawings and descriptions of different fruits in his and other
journals. Similar models have been manufactured by a number of pomologists
and companies into the 20th century for the purpose of teaching and advising
authorities, tree nurseries, or private circles. The fruits manufactured by the
Landes-Industrie-Comptoir which can be found now in the pomological cabinet
of the Bamberger Naturkundemuseum are some of the artistically and techni-
cally most perfect models (Mäuser, 2002). As they were produced over a period
of 19 years, it is assumed that there are many examples still available. Enquiries
in Germany and other European countries have been made and some of these
models have been found in museums or private collections.

Fruit-growing and pomology reached its summit in the 18th and 19th cen-
turies. It was during this period that a great variety of thousands of types of
apples and pears were disseminated. The number of different types available

1The field of pomology is a branch of botany which is concerned with fruit-growing.
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Figure 5.1: The pomological cabinet in the Bamberger Naturkundemuseum

was immense and things were made even more difficult because fruit types have
often been given different names in different locations. Extensive papers and
books about pomology were written in a number of European countries which
tried variously to sort out the confusion, to correctly distinguish varieties of
fruit, to assist in fruit-growing, or simply to recommend specific fruits. The
lifelike three-dimensional models complemented those books particularly well
by showing the actual appearance of fruits.

The fruits of the Bertuch manufacture are hollow and have a thickness of only
2 mm. The material consists of a glaze of beeswax with a dash of Kremserweiß
(white lead). By contrast to other models which are made up of plaster, papier-
mâché, or timber the Bertuch-models are quite sophisticated. The wax has been
poured into a two-part hollow body — the plaster cast of a fruit. The wax is
then distributed evenly all over the form by shaking the body, which could be
detached from the hardened wax fruit later on. The stalks were made from
revolved and waxed yarn. Finally, the model was polished and painted. Figure
5.2 shows a damaged model, giving an idea of how the wax apples look from
the inside.

Let us put ourselves in place of a pomologist who is interested in apples and
their historical development. A collection such as the one in the Bamberger
Naturkundemuseum is of great interest to us, since we want to know what
kinds of apples existed in the past. The collection is a considerable archive of
old fruits; often common in their time, but many of which have subsequently
become extinct. For the purpose of identifying old fruits which are rediscovered
in nature, the Bertuch-collection is an important, indeed indispensable, source.
It is exclusively the visual appearance which is conserved by wax fruits and it is
therefore only this to which we have access. That is, we have to specify visual
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Figure 5.2: A damaged wax apple — Rother Kronenapfel

properties of a fruit to identify it. Besides colour and texture, it is primarily the
shape of an apple which distinguishes it from others and it is therefore this in
which we are interested. For this reason, we will search graphically for apples
with specific shape properties. Shapes are rather difficult to specify because the
variety of shapes is infinite; therefore, it is necessary to put emphasis on those
properties which can readily be made graphically by a human user. That is, we
specify shapes using sketches which are to be analysed and evaluated regarding
our qualitative description. The description can then be compared with the
images in the Bertuch-collection with the object of finding images of apples
resembling the graphical query in terms of the necessary shape properties.

5.2 Method

We are interested in the retrieval performance when using graphical queries.
That is, we want to know whether our qualitative representation provides an ap-
propriate means for comparing images contained in a collection with the sketch
of a shape someone is looking for. One method for evaluating the retrieval per-
formance of search algorithms measures the precision and recall of queries with
respect to some reference collection. This method and a number of others are
discussed in (Baeza-Yates & Ribeiro-Neto, 1999). In particular, we are then
able to evaluate how our approach compares to others.

5.2.1 Performance measure

The Bertuch-collection is our reference collection, which we will denote as C.
The set of all relevant images regarding a sketched query S is called RS ; we
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refer to RS as the reference set (of S), and it holds that

RS ⊆ C (5.1)

RS contains all those images which an optimal algorithm would retrieve. The
set of images which are actually retrieved by using S is called the result set AS

and it holds that
AS ⊆ C (5.2)

Those images which are both retrieved by S and relevant regarding S form a
set of images RA which we refer to as the relevant result set. It holds that

RA = RS ∩ AS (5.3)

In the worst case RA is empty, i.e. RS and AS are completely different. One
obvious case of this is that AS could be empty, which will happen when no
image can be found which matched the query sketch S. In the best case RA

coincides with RS and it then holds that AS ⊇ RS . The fraction of the number
of all available relevant images, |RS |, contained in the relevant result set, |RA|,
is called the recall RC of a sketched query S:

RC =
|RA|
|RS |

(5.4)

A recall is optimal if it is 1, i.e. if RA = RS . As there can only be as many
relevant results as there are relevant images in the whole collection C, it holds
that |RA| ≤ |RS | and as such that RC ≤ 1. In the worst case it holds that
RA = ∅ and therefore |RA| = 0 and thus that RC = 0. Typically, the recall will
be somewhere between 0 and 1, indicating that only a subset of the relevant
images have been found.

The recall does not take into account all those images which have been
found. It could be the case that RC = 1 but that AS ⊃ RA and that therefore
RS ⊂ AS . In this case, AS also contains some irrelevant results in addition to
all the relevant images. Irrelevant results are considered when measuring the
precision of a query, which relates all results obtained to the number of relevant
images contained in the result set:

PR =
|RA|
|AS |

(5.5)

If the result set, AS , contains all the relevant images and no irrelevant images
then it holds that PR = 1. Sometimes the result set may contain only relevant
images but not all of them. In this case the precision is still 1, but the recall
would be less than 1. The precision decreases when the number of irrelevant
results increases since then |AS | increases while |RA| does not change. The more
wrong images there are in AS , the lower the precision, even if many (or all) of
the relevant images are also found. It holds that |RA| ≤ |AS | and 0 ≤ PR ≤ 1;
if there is no relevant image in the result set, it also holds that PR = 0. It is
assumed that at least one image is found, i.e. that |AS | > 0.
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A precision-recall graph can be plotted for each individual query. This graph
is derived by comparing the ranked result set AS with the set of all available
relevant images RS . Let us consider an example. RS = {I1, I4, I5, I6} and
AS = (I4, I8, I5, I9), the brackets of AS indicating a sorted (ranked) set. In this
example, the precision-recall graph is obtained as follows: The first image found
is I4. It is contained in RS and as such it is considered to be relevant. For the
first case we consider only the first element in the result set AS which is the first
relevant object, that is AS = (I4). It then holds that RA = RS ∩ AS = {I4}.
The recall is then RC = |RA|

|RS | = 1
4 = 25%, with the precision being PR =

|RA|
|AS | = 1

1 = 1. The next relevant image in AS is at the third position since I8

is not contained in RS , but I5 is. As such we now consider AS = (I4, I8, I5).
It then holds that RA = {I4, I5}. It follows that RC = |RA|

|RS | = 2
4 = 50% and

PR = |RA|
|AS | = 2

3 = 0.6. We proceed in this way until all relevant images in the
result set have been considered.

A prerequisite for computing the precision and recall is that we know which
images in C are relevant with respect to any query sketch S. For the purpose of
evaluating our approach we determine subsets of C. Each such subset represents
one RS , i.e. it contains only those images which are relevant given a specific
query S. Admittedly, such a selection is quite subjective. In particular, if the
expert who determines relevant sets fails to notice one or more of the relevant
images, the resulting RS will contain only a subset of all relevant images. On the
other hand, a reference set which has been identified by an expert contains only
those images which the expert regards as relevant. An expert-made reference
set, it follows, can be regarded as an appropriate approximation of the real set of
relevant images in C; in a sense, it may even be regarded as the only appropriate
set of relevant images in C — who can decide better than the expert what is
relevant?

5.2.2 A qualitative approach

We shall now outline how we analyse both the apples of the Bertuch-collection
and graphical queries, i.e. sketches. Gaps in the sketches are closed by mor-
phological operations (Serra, 1983) before contour extraction. The extracted
contour can then be approximated by a closed polygon using, for example, the
method of (Mitzias & Mertzios, 1994). A granularity level can be defined on
the basis of the maximum difference between the original contour and the ap-
proximating polygon. The larger this difference is, the coarser the granularity
level. Finally, the qualitative description can be derived from the polygon.

Using the methods we introduced in chapter 4, the qualitative matrix of
a polygon is analysed (see Definition 4.5). For the purpose of classifying the
body of an apple, we determine its overall shape by considering the convex
parts of its body which can make up a round, vertical, or wide shape. This can
be determined by looking for those columns in the qualitative matrix in which
overlap- and during-relations mount up, showing deviations from a roundish



5.2. METHOD 141

shape and indicating whether these deviations result in a vertical or wide shape
regarding the image plane (see section 4.3.2). Concavities can be determined
from local properties, i.e. from T LT s (see section 4.1.2). By this means, a
shape can be divided up into its convex and concave parts, which can then be
analysed further (section 4.3). This allows us to identify stalks and other uneven
patches in the contour, in particular dents and hillocks which show typical
properties of different types of objects. Figure 5.3 shows typical examples which
can be characterised by patterns of concave T LT -relations, such as chains of
T LT (4, 33)- or T LT (11, 26)-relations. In order to distinguish two kinds of stalks
we measure the extent of those parts which have been identified as stalks. As
described in Definition 4.10, the extent tells us something about the complexity
of a polygon’s course, i.e. if primary intervals are placed equally or differently
with respect to a reference segment, and to what extent they surround it. This
allows us to distinguish stalks which are almost straight from those which are
bent.

Figure 5.3: Examples for hills at the top (left) and dents at the bottom (right)

5.2.3 A quantitative approach

In order to show how our approach compares to others, it is useful to choose
an alternative approach which is also based on polygons. The discussion about
the performance of different approaches can then concentrate on the question
of how these approaches work on the same representation of an object. Even
more important is to compare our approach with an algorithm which is based
on the same representation at the same granularity level. Since we have argued
that sketches should be analysed at coarse granularity levels in order to focus
on necessary features, it should be quite possible to perform better than any
approach which is not based on a coarse representation.

By describing and comparing polygons using a classic quantitative geometric
approach (specifically, comparing the lengths of, and angles between equivalent
line segments in two polygons), we can evaluate our method as an alternative.
But before comparing polygons using this quantitative approach, the lengths
of the line segments must be normalised with respect to the longest side; this
allows to compare polygons with different scales. For two polygons with the
same number of vertices, it is then possible to quantitatively calculate their
distance from each other. Since there are n ways to match two polygons with n
lines, all these matches are calculated, and the one giving the smallest distance
is taken as the result. Two equal polygons have a distance of zero, and the more
their angles and the lengths of sides differ, the higher their distance becomes.
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From now on, we will refer to this approach as the quantitative approach and
to our own as the qualitative one.

5.2.4 Comparing performances

Having two methods, their retrieval performance can be compared using their
precision-recall curves for the same query-sketch. In particular, the curves show
for which approach the precision decreases faster as the recall increases, and
whether the two curves develop similarly or in different fashions. The preci-
sion histogram shows directly these differences by plotting the difference of the
precisions of both algorithms, A and B, for the same recalls:

ΔPRR = PRR(A) − PRR(B) (5.6)

with the index R denoting the considered recall. A difference of zero indicates
that both algorithms perform equally well; a positive difference shows that algo-
rithm A performs better; a negative difference shows that algorithm B performs
better than A.

All these measures for comparing two algorithms can also be used for com-
paring a single algorithm with a different parametrisation or applied to different
reference sets.

5.3 A retrieval experiment

The qualitative approach is now compared experimentally to the quantitative
one. For this purpose, a number of sketched queries are made, and a reference
set determined for each query. The reference sets can then be taken in order to
compare the precision-recall behaviour of the two algorithms.

5.3.1 Image collection

The material consists of a collection of images produced at the Bamberger
Naturkundemuseum. These pictures have been taken for the purpose of pro-
viding a database which shows fruits from the Bertuch-collection from different
perspectives so that an expert can look for specific fruits in the collection.

There are 27 different types of apple in this collection. These apples show
various specific properties, such as having a body which is essentially round,
vertical-shaped, or wide — a classification which is also used by pomologists
(Petzold, 1982). Petzold also describes the surface around the calyx which
sometimes shows dents and humps; sometimes there are also hillocks around the
stalk, or around both the calyx and the stalk. Besides these properties of the
outline, pomologists also consider the shape of the core and its position. But this
information is not available from the Bertuch fruits and as a consequence we are
restricted to the outlines of the fruits, which Petzold refers to the fruits’ relief.
It is, however, not important whether we describe exactly the same properties
which pomologists use in order to classify fruits. Instead, it is important to
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identify characteristics someone is able to specify in a graphical query. Such
characteristics are then compared with the image collection.

Figure 5.4: An Italienischer Weisser Rosmarienapfel (left), its contour (middle),
and the contour approximated by a polygon (right)

The images of the collection have been preprocessed by binarising them (re-
ducing them to one bit per pixel). In order to compare the properties of the
reliefs, the contours of the fruits are automatically extracted and approximated
by polygons. Figure 5.4 shows an example. Finally, the qualitative description
for each polygon is generated. Applying the same procedure to the graphi-
cal query, a description for this query is generated, and this is compared to the
descriptions of the images in the database. That is, our comparison resides com-
pletely at an abstract symbolic level at which only necessary shape properties
are compared.

Table 5.1 shows the fruits of the collection. Each fruit relief can be specified
by the following features:
1. round, vertical-shaped, wide
2. hills at the top or bottom or both or neither
3. dents at the top or bottom or both or neither
4. a straight or bent stalk or no stalk shown

These features combine to a configuration space with 3 ∗ 4 ∗ 4 ∗ 3 = 144 classes.
For example, the Italienischer Weisser Rosmarienapfel has a vertical-shaped
body and its stalk is bent (see Figure 5.4). Measuring the performance of our
approach we shall not distinguish whether dents or hills are at the top or bottom
in order to remain invariant with respect to orientation; the user may specify
an apple with the stalk at the top or at the bottom — we do not want to place
overly restrictive constraints on the user. It is also sufficient to distinguish
whether there are dents or not, regardless of their number since the number of
dents is not a discriminating factor. As a result of this, the configuration space
is reduced to 3 ∗ 2 ∗ 2 ∗ 3 = 36 classes.

If the search algorithm is unable to find any object in the collection which
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Table 5.1: Fruits of the Bertuch-collection and a possible classification; abbrevi-
ations: w=wide, r=round, v=vertical-shaped, c=calyx, s=stalk, b=bent stalk;
an empty box indicates that there is no such feature

No Name Body Hills Dents Stalk
1 Doppelmontagne v s
2 Feigenapfel w b
3 Fränkischer Schmeerapfel v c s
4 Fürstenapfel v
5 Gedrückter Hartig w c
6 Gestreifter Sommercalvill w s
7 Gestreifter Winter Erdbeerapfel v c
8 Grosse Rothe Pilgrim v c s
9 Grosser Pipping r c b
10 Grüne Reinette w s s
11 Grüne Zwetsche v b
12 Italienischer Weißer Rosmarienapfel v b
13 Neuyorker Reinette w b
14 Rother Fenchelapfel w s
15 Rother Herbstcalville v s
16 Rother Stettiner w s
17 Rother Taubenapfel v s
18 Rother Wintercalville w s
19 Schwarzer Borsdorferapfel w s
20 Sommer Zuckerapfel r c s
21 Veilchenapfel r c s
22 Weiße Herbstkalville v s
23 Weißer Maatapfel w
24 Weisser Sommercalvil w c s
25 Weisser Winterkalvill v s
26 Zwei Jahre dauernde Renette w s
27 Zwiebelborsdorferapfel w
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satisfies all features of the query, it ignores features depending on the priorities
which are determined by the domain of apples:

1. The overall shape of the body is most important since it is the most salient
feature.

2. The stalk, on the other hand, is less important. If it is not specified in the
query then it may be part of objects the user is looking for, or not.
If a stalk is specified then it matters whether it is straight or bent, assuming
that there is one in the result, because the user is obviously looking for a
specific stalk.

3. Hills and dents are similar features though hills are more salient than single
dents, since they frequently determine the appearance much more than
dents (which may be quite small).

From this it follows that the body has the highest priority, followed by hills,
dents, and finally the stalk. Taking these priorities into account we are able to
generate ranked result sets. Rankings are necessary in order to plot precision-
recall graphs.

Some fruits show differences in their relief depending on the viewpoint. For
this reason there are two different images for each object, showing it from differ-
ent viewpoints, making a total of 54 images in the collection. These images, the
extracted contours, and their polygonal approximations are listed in Appendix
A.

5.3.2 Query-sketches

Six queries from three different people were made; these are shown in Figure 5.5
and (together with their polygonal approximations) in appendix B. To allow just
one single granularity level a predefined area was provided, within which one
had to sketch the query. As a consequence, the same granularity level works
equally well for all queries. In order for this to work, it is assumed that the
predefined area is approximately filled by each sketch. Another parameter which
is important for determining an appropriate granularity level is the compactness
of objects. The less compact an object is, the finer the granularity level of the
polygon has to be, so that no details get lost. In our case the objects are all
similarly compact as we are faced with one single object category.

5.3.3 Results

Sketch 1

The first sketch is shown on the left hand side of the upper row in Figure
5.5. The reference set consists of seven objects, the positions of which in the
ranked result set are shown in Table 5.2, together with the precision and recall.
The number following the name of the object denotes one of the two views of
that object. Figure 5.6 shows the precision-recall curves for that query-sketch,
allowing comparison of the qualitative and quantitative approaches.
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Figure 5.5: Six sketched queries

Our results show that the qualitative algorithm generally performs much
better than the quantitative one. While the performance of the quantitative
one is almost independent of the recall rate, the qualitative algorithm shows
a tendency to achieve higher precision at lower recall rates, with the precision
decreasing slightly as the recall increases.

One obvious question is whether the algorithms perform differently at dif-
ferent granularity levels, since we obtain different polygons depending on how
finely the fruits’ reliefs are approximated. Figure 5.7 shows the performance
of both algorithms at a finer granularity level than Figure 5.6. While there is
almost no difference for the quantitative approach, the performance of the qual-
itative one is slightly lower, especially at higher recall rates. Figure 5.8 shows
two further precision-recall curves for a coarser granularity level than that used
in the first test. While the qualitative algorithm performs significantly better
than the quantitative approach at the two finer granularity levels, it is only
slightly better at the coarsest granularity level.

The differences in the precisions achieved by the qualitative algorithm de-
pending on the chosen granularity level is shown in the histogram in Figure 5.9.
For each recall rate the comparison for the three granularity levels is shown.
The algorithm performs better at the medium approximation level than at the
fine approximation level except at recall rates between 57% and 71%, and at
recall-rates lower than or equal to 28% they work equally well. Both give much
better results than the coarsest granularity level unless the recall rates are equal
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Table 5.2: The first sketch and its precision and recall (qualitative approach)

Position in Name Precision Recall
ranked result set

1 Gestreifter Winter Erdbeerapfel I 1.0 0.14
2 Doppelmontagne I 1.0 0.28
5 Sommer Zuckerapfel I 0.6 0.42
6 Veilchenapfel I 0.66 0.57
7 Veilchenapfel II 0.71 0.71
8 Weisser Winterkalvill I 0.75 0.85
20 Rother Wintercalville I 0.35 1.0

Recall

Precision

0 0.25 0.5 0.75 1
0

0.5

1

qualitative
quantitative

Figure 5.6: The precision-recall curve for the first query

Recall

Precision

0 0.25 0.5 0.75 1
0

0.5
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quantitative

Figure 5.7: The precision-recall curve for the first query at a finer granularity
level
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Recall
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Figure 5.8: The precision-recall curve for the first query at a coarser granularity
level

to or higher than 85%, when the algorithm works slightly better at the coarser
granularity level.

Query-sketches 1 to 6

Figure 5.10 shows the average precision for all six sketches. Figs. 5.11 to 5.12
show the complete precision-recall curves. Figure 5.11 shows all six query-
sketches and their precision-recall. For all sketches the qualitative approach
performs better than the quantitative one. However, the result set in the quali-
tative case has been ranked optimally. That is, if there are a number of equally
prioritised results, the best position is always taken. If, instead, we arrange
objects in the result set of equally prioritised objects arbitrarily, we obtain
the non-optimally ranked precision-recall graph, which is shown in Figure 5.12.
Even in this case, however, the qualitative approach performs better. The ref-
erence sets of all sketches and the precision-recall rates for both algorithms are
given in Appendix B.
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Figure 5.9: The precision histogram for the first query, comparing the three
granularity levels with each other
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Figure 5.10: The average precision for all six queries and both the qualitative
approach and the quantitative one
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Figure 5.11: The precision-recall curves for all six queries, with the qualitative
result ranked optimally
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Figure 5.12: The precision-recall curves for all six queries with the qualitative
result non-optimally ranked
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5.3.4 Discussion

Necessary versus accidental properties

At the beginning, we identified the problem that sketches contain both nec-
essary and accidental shape properties. We proposed to distinguish them by
qualitatively describing positional relations between line segments arranged to
approximate the underlying shape, assuming that such qualitative relations are
closely related to what the human user is able to distinguish both when he
is remembering a shape and when he tries to sketch it. By contrast, we as-
sume that accidental shape properties are related to those distinctions which
are quantitative. For example, the Grüne Zwetsche and the Italienischer Weißer
Rosmarienapfel (left and centre, respectively, in Figure 5.13) are both approxi-
mately vertical-shaped and both have a stalk which is relative long and slightly
bent. By contrast, an object like the Rother Stettiner (right hand side of Figure
5.13) is wide and has a short stalk. This distinction between short straight stalks
and longer ones which are bent is perceptually salient and corresponds to neces-
sary properties. On the other hand, the precise differences between the stalks of
the Grüne Zwetsche and the Italienischer Weißer Rosmarienapfel are not impor-
tant when we only want to distinguish two stalk categories, namely long bent
stalks and short straight stalks. The quantitative approach did not make the
distinction between accidental properties and necessary properties, but consid-
ers details of stalks based on the granularity level used and, as such, regards
stalks from the Grüne Zwetsche and the Italienischer Weißer Rosmarienapfel as
different. The performance results show that the distinction between necessary
and accidental shape properties is relevant to getting appropriate rankings of
the results. This supports our thesis that necessary properties are appropriately
described by the perceptually aided distinctions which we implemented using
qualitative line arrangements while accidental properties are related to metrical
distinctions (see our Thesis at the end of section 3.1.1).

Figure 5.13: The Grüne Zwetsche on the left, the Italienischer Weißer Ros-
marienapfel in the middle, and the Rother Stettiner on the right
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Qualitative differences

It is obviously much simpler to sketch qualitative differences than precise quan-
titative distinctions. How does our approach manage to identify the qualitative
differences when dealing with the imprecise shapes of the queries? As an exam-
ple, let us consider the query in Figure 5.14. After closing the gaps (such as the
one indicated by the arrow — which is almost invisible at this resolution), the
object is binarised, and its contour is extracted and approximated with a poly-
gon (seen on the right hand side of Figure 5.14). As the example shows, there
is almost no difference between the original sketch and the polygon, meaning
that all necessary properties are still available.

Figure 5.14: A sketched query

We shall have a closer look at the analysis of the stalk in order to demonstrate
our method. If we zoom into Figure 5.14 and show the stalk in close-up, we
obtain Figure 5.15. Here we see how qualitative line arrangements could allow
us to distinguish whether a stalk is bent relative to its body or not. This
can be detected by checking whether there are line segments at the tip of the
stalk relative to which parts of the body are in relations such as xy = BOr

and xz = FOr — there would not be such overlap relations if the stalk points
straight up, rather than being bent in this way. The results of our tests indicate
that such relations are robust against the imprecision of sketches.

Yet another variation is shown in Figure 5.16. In this case, the stalks of two
apples have been completely detached from their body. On the left is the stalk
of the Italienischer Weißer Rosmarienapfel and on the right hand side the one
from the fifth sketched query. The extent of each polygon shows whether a stalk
is bent or not. Consider the scopes of the polygon on the left hand side:

σ(C(x)) = [Fr, l, Bl[ ]Fr, ε, Fr] ∧ η(x) = 7
σ(C(y)) = [Fr, l, Br[ ]Fr, ε, Fr] ∧ η(y) = 9
σ(C(z)) = [Fl, l, Br[ ∧ η(z) = 7

By contrast, for the less bent stalk on the right hand side it holds (for the
concave line segments) that:

σ(C(x′)) = ]Fr, l, Bl] ∧ η(x′) = 7
σ(C(y′)) = ]Fm, ε, Bm] ∧ η(y′) = 7
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Figure 5.15: The polygonal stalk of a query and its relation to the body

σ(C(z′)) = [Br, ε, Br[ ]Dl, l, Br] ∧ η(z′) = 5

The scopes and their extent show some differences. In particular, for the
stalk on the left hand side the maximal extent is larger by two than the maximal
extent of the stalk on the right hand side. This is actually how we distinguish
the two different kinds of stalks in our experiment, and this shows how we focus
on qualitative differences of imprecise shapes by describing the arrangements of
line segments qualitatively.

Figure 5.16: Two differently bent stalks and their qualitative line arrangements

Having used a number of qualitative properties which can be derived from
the qualitative matrix (see chapter 4), it could be regarded as a drawback of our
qualitative approach that one has to determine which of those properties allows



154 CHAPTER 5. APPLYING QUALITATIVE LINE ARRANGEMENTS

us to discriminate properties or categories for the domain at hand. Rather
than providing a general similarity measure which is independent of the domain
involved (as for the quantitative approach), a multitude of qualitative properties
are generically given by the qualitative matrix. In the Bertuch-scenario it was
sufficient and not difficult to find a number of appropriate properties to make
the distinctions required, but this may well be more difficult in other domains.

Granularity and complexity

Another crucial factor in the performance is the chosen granularity level, as we
have seen. Figure 5.17 shows the first query-sketch, with the original contour
in the upper-left corner and approximations to this contour at three different
granularity levels. The dent at the top disappears at the coarsest granularity
level, showing why the algorithm does not perform so well at granularity levels
which are so coarse that details disappear. Such details will probably also
disappear for some of the objects in the collection and, as a consequence, objects
which have different descriptions at finer granularity levels become more similar
at coarser granularity levels and eventually get ranked equally in the result set.

Figure 5.17: The original contour of the first sketch and its approximation at
three different granularity levels

We have compared the two search algorithms in terms of their precision-
recall behaviour. Another important issue when dealing with image databases
is the runtime complexity of search algorithms. The runtime complexity is equal
for both approaches. Taking the number of lines involved, n, the quantitative
approach needs to try n matches, from which it takes the best (i.e. closest) one.
Each match involves linear time complexity, since only the angles of adjacent
lines and their lengths need to be computed. As a consequence, the run time
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complexity of the quantitative approach is O(n ∗ n) = O(n2). The qualitative
approach on the other hand needs only to compare a handful of characteristics,
which requires constant time. But the qualitative approach also requires the
computation of a polygon’s course, which is O(n2) since the relative position of
each line segment is considered in relation to each other line segment, increas-
ing the runtime. However, while the quantitative approach has to be computed
every time a comparison is made, the polygon’s course only needs to be com-
puted once; the qualitative features of the polygon can be stored and directly
referred to whenever its similarity to another polygon needs to be evaluated.

General conclusion

We conclude as follows. In the experiment we investigated whether qualitative
line arrangements provide sufficient means for querying an image database using
a sketch. The performance results are satisfactory: (i) the first quarter of all
relevant images for all but one of the queries were found with a precision of 1.0.
The one exception performed at least as well as the other queries at recall-rates
from about forty percent upwards. There are sometimes a number of objects
which fall into the same category, and as such, are at the same ranking level.
If objects at the same ranking level are ranked by chance they are referred
to as non-optimally ranked. The performance of non-optimally ranked result
sets is slightly inferior to the optimally ranked result sets. (ii) The qualitative
approach performs better than the quantitative approach. The sole exception
to this is the fifth query, and only when we consider the non-optimally ranked
result set. (iii) A single granularity level appears to be sufficient for all objects.
That is, we do not need to decide separately for each object how fine it should
be approximated in order to achieve satisfactory results.

In addition to these outcomes, attention should be paid to the fact that,
in the experiment, we were faced with objects from a single category. This
implies that all of the objects are quite similarly shaped and that the method
under consideration has to provide means to focus on those properties which are
crucial for discrimination purposes. Additionally, these properties may well be
sketched quite differently in different queries and especially by different people.
As a consequence, a great range of variations has to be taken into account in
order to allow for different instances of those properties. Here, we have seen that
qualitative line arrangements can cope with these difficulties. The advantages
of qualitative line arrangements are twofold: line segments which approximate
the underlying shape at a coarse granularity level compensate somewhat for the
inexactness of the sketch, and the specific qualitative relations allow quite a large
range of variations, compensating even more for the inexactness, while allowing
for crucial distinctions. There is a trade-off between those relations which are
readily distinguishable in a sketch and those which allow discrimination between
different objects or different properties. Here, we have shown that BA-relations
form an eligible candidate for such a set of relations.



Chapter 6

Positional-contrast

6.1 Ease of sketching

Graphical queries for the purpose of searching for pictorial information are of
growing interest in areas where pictures provide valuable information; for in-
stance, in order to make historical collections of objects d’art available through
image databases. Sketching graphical queries is a natural way of revealing the
visual appearance of objects one has in mind. The problem which arises is to
identify necessary shape properties of sketches, that is, those properties which
are not accidental but are necessary for specifying a particular object property.
This problem arises in particular with sketches because they are imprecise, and
often distorted by the artistic limitations of the sketcher. We face these difficul-
ties by representing necessary shape properties using qualitative line arrange-
ments. In this context, only line arrangements which show properties that are
both readily sketched and easily perceivable are considered to be different.

Our approach is based on straight line segments. These encode information
about all fundamental dimensions which play a role when representing shapes
in pictorial space, namely position, orientation, and length. In the application
example with the Bertuch-fruits, we restricted our attention to single shapes,
that is to the fruits’ outlines. The outline of an object is of particular impor-
tance, since it shows how the object’s shape is related to other objects, and
how it stands out against its environment when being perceived. An outline
approximated by a polygon is completely represented by a number of line seg-
ments. Positions, orientations, and lengths of the line segments of any polygon
are determined by the approximation algorithm, which minimises the difference
between the original outline and the approximating polygon. In chapter 4 we
introduced a qualitative representation for polygons which allows us to derive a
number of characteristics of any polygon. These characteristics are all derived
from the way in which line segments are arranged relative to each other. That
is, we use neither the relative orientations of line segments, nor their relative
length. From the results of the Bertuch-scenario we conclude that the use of
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Figure 6.1: Interval relations, defining different positional relations between two
line segments

only positional information is, if not sufficient, at least expressive as a means of
characterising necessary shape properties in sketches.

From the point of view of sketching, positional relations can be readily dis-
tinguished. Consider the basic relations of BA23 (shown in Figure 6.1) — it is
certainly not difficult to distinguish, in a sketch, such relations as front-left and
front-right, or front-overlap-left and front-left; nor are they difficult to draw. It
is primarily the coarseness of the relations of BA which allows us to cope with
imprecise sketches — the correct BA-relation will typically be maintained even
in very distorted drawings. In a sketch there are, of course, not only pairs of line
segments but arbitrarily curved outlines — but as soon as a curve is translated
into a polygon which approximates that curve, curved line segments translate
into a number of straight line segments. These line segments represent curved
lines, and as such relations between curved parts of the original outline are rep-
resented by relations between a number of different line segments. A number of
straight line segments coarsely approximate any curved line.

However, in a sketched outline the way in which parts of the outline are
arranged relative to each other in order to characterise shapes is crucial. These
arrangements describe relative positions of parts. That is, we assume that two
outlines in which relative positions of parts are different should differ accord-
ingly, so that their difference can be easily perceived and readily sketched. This
difference, or contrast, between such two outlines is due to differences in the
positional relations of their parts, and we therefore, refer to effects those differ-
ences induce as positional-contrast. We argue that positional-contrast is both
easily perceivable and readily sketchable. As a consequence, it provides a useful
means for dealing with imprecise spatial information and characterising neces-
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sary shape properties in sketches.
The simplest examples of positional-contrast are the basic bipartite arrange-

ments shown in Figure 6.1. More complex examples are given by the distinctions
used in the Bertuch-scenario, which are all derived solely by positional-contrast.
Or, consider again the face in Figure 1.2. Stylised drawings such as this face, we
argued at the beginning, are made up of a minimum of spatial information, yet
this drawing is precise enough for us to determine its category. Since it consists
only of a number of lines, the relative positions between these lines and between
components of these lines are obviously important in determining that it be-
longs to the category of faces. Yet another example is Attneave’s cat in Figure
2.3. Here, only straight line segments are used, as in the Bertuch-scenario. The
cat as a whole is obviously identified by the way in which straight line segments
are related to each other, i.e. by positional-contrast.

While we have introduced the basic principles required to establish the con-
cept of positional-contrast further investigations are necessary in order to show
how positional-contrast can be applied not only to single objects but to scenes
comprised of a number of objects. For example, the course of a polygon P
could be defined with respect to another polygon Q, or a third object could
be used in order to describe the relative positions between P and Q; given
two polygons they could be described relative to each other by using reference
parts to show which properties can be perceived from a given point of view. In
these cases, the courses obtained do not include the identity relation and, as
a consequence, these courses contain no local properties. Especially, concepts
such as those discussed in section 3.2.3 are to be considered when investigating
positional-contrast in the context of complex polygons.

In general, a curve contains properties at different levels of detail. Sometimes
it is therefore necessary to consider a number of polygonal approximations of the
same curve at different granularity levels. In the Bertuch-scenario a granularity
level could be found which worked better than any coarser or finer level, but in
domains in which the spectrum of properties (fine and coarse) is larger than in
the Bertuch-scenario it may be useful to consider relations between properties
at different levels of detail. In this way, the notion of positional-contrast shows
its value in simultaneously considering details at different scales.

6.2 Geometrical classification

How does our approach fit into the hierarchy of other geometrical approaches?
Qualitative line arrangements impose weaker constraints on geometrical rela-
tions than approaches based on affine geometry, since qualitative line arrange-
ments maintain neither angles nor lengths. On the other hand, they allow for
stronger constraints than topological approaches such as RCC8 which classifies
all of the BA-relations as equal, since they are all disconnected.

Instead, the spatial precision of qualitative line arrangements is on the level
of ordinal information (projections). A reference interval introduces a system
with three oriented lines — the orientation grid. The endpoints of the primary
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interval are fixed in relation to these lines: each endpoint of the primary line
can lie on either of the sides of each line. Two of the lines of the orientation
grid are parallel, with the third one aligned orthogonally to them. Therefore, a
resolution of 90◦ angles is considered. For a full discussion of this, see section
2.2.

The distinction from other similar approaches becomes clear when comparing
it with the most general approach which is also based on line segment relations in
the plane. (Schlieder, 1995b) defines a system where only one line is determined
by the reference interval. The positions of the endpoints of the primary interval
can then be determined with regard to this line. That is, they are either on
one side or the other of that line or else lying precisely on it. In this way, 180◦

angles are distinguished, leading to a coarser classification of line arrangements
than in our case. For a thorough comparison see (Gottfried, 2003b).

6.3 Applications beyond sketching

Before we finish, we will consider further application areas in which the con-
cepts introduced in this work may be of particular interest. Before we leave the
issue of sketching we will consider one final example. In the context of image
retrieval systems, what matters is that database images match a query image as
closely as possible. In contrast, for special domains there are relationships which
are particularly important, and the image retrieval system should accordingly
focus on such relations rather than on precise correspondences between query
image and retrieved images. For instance, in geographical information systems
what matters are topological relations between geographical objects (Egenhofer,
1997). It may, for example, be crucial to a particular query that there is a for-
est and that there is a river which is not connected to the forest; but it does
not matter at all what the boundary of the forest looks like, or how far the
river is from the forest provided that they are not in contact; such geometrical
relationships are not important when we are interested in those images where
only the given topological relationships hold. Precise correspondences would
retrieve fewer results than there are actually in the image database. But some-
times topological relationships do not sufficiently characterise the query image.
For example, it might be crucial to take the curve progression of the river into
account. In this case, a T LT description could be used in order to describe
coarsely the curvature of the river in the sense defined in (Gottfried, 2003b).
Curvature information is important for many kinds of geographical and artificial
objects, including among others coastlines, borders of countries and other re-
gions, rivers, transportation networks (roads and railways), irrigation networks,
and sewer systems.

It is desirable that user interfaces become more natural. Personal digital
assistants, for example, require natural interfaces for working with them to
be efficient. Graphical gestures which are made with pen-like input devices
allow for concisely formulated commands. Such gestures need to be both easily
remembered and simple to make, but simultaneously there is the need for a large
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number of such gestures in order to cope with a lot of different situations. The
investigations of (Long Jr., Landay & Rowe, 1997) showed that users appreciate
gesture-interfaces and demand applications which support more gestures, since
they are efficient to use. However, problems arise on the side of the users in
memorising gestures, and on the side of the system in correctly recognising
them. BAs and T LT s may represent a vocabulary of gestures which can be
distinguished quite well, and which can be drawn easily.

In the context of cartography we are faced with the problem of dealing
with complex maps. Maps often provide the user a vast number of possible
ways in which one might get from one place to another one. It is desirable to
know the best way in terms of length, comfort, or simplicity. The latter may be
determined automatically using T LT s to determine which of the available paths
is the least curved in the sense of qualitative degrees of curvature (Gottfried,
2003b). Such a route should be easily memorised.

Activity patterns represent a further problem class for which characterisa-
tion by coarse shape information is useful. Depending on the spatial scale, an
appropriate abstraction of precise movement information is necessary. Rather
than considering precise movements it may be convenient to choose an abstrac-
tion level that allows deduction of typical behaviour patterns, for example, to
distinguish explorative versus single-minded activity patterns. This is of in-
terest in several fields, such as aerial navigation routes, satellite orbits, and in
investigations into the movements of people and animals. Related to this field
are dynamic scenes containing a number of objects, rather than single trajecto-
ries. Traffic scenarios and other fields in which a number of autonomous objects
interact require some means of representation and reasoning. Problems which
arise here are discussed in (Gottfried, 2004a).

A quite different area is the field of trend curves. When considering trend
curves we are interested in the overall change of the curve, that is, we are
interested in the curve taken by and large rather than in precise properties
which are obtainable by curve sketching. Predictions of future trends in share
prices and climatic variations are typical examples. (Okabe & Masuyama,
2001), for example, proposed an approach for dealing qualitatively with trend
curves. But their approach mainly focuses on consideration of the maxima
and minima of a curve; the curve progression is not taken into account. This
could be accomplished with different T LT -relations which represent a number
of different slopes qualitatively.

Spatial configuration tasks, as applied in interior design or graphical user
interfaces, are faced with a set of constraints between objects which have to be
satisfied. In contrast to applications such as yellow page layout where primarily
the arrangement of equally oriented rectangles is required (Schlieder & Ha-
gen, 2000), objects that can be oriented arbitrarily, such as furniture, require a
more complex representation. BAs provide a means of representing arbitrarily
oriented objects.

For all these applications shape information is necessary, but rather than
precise geometrical shape descriptions only concise shape characterisations mat-
ter in order to solve particular problems. In the context of these applications,
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it is crucial to determine which shape properties are necessary and which are
accidental. Qualitative line arrangements provide a means of characterising nec-
essary shape properties. On the one hand, we propose several characteristics
for describing polygons (and thereby shapes) qualitatively. On the other hand,
we provide a relation algebra which allows us to deal with arbitrary patterns of
line arrangements within the plane.
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Appendix A

Bertuch-collection

Each of the 54 images of the Bertuch-collection, which are used in the evaluation
scenario described in chapter 5, is shown, together with its extracted contour
and polygonal approximation. The maximal error between the original contour
and the polygonal shape is 5 pixels. Note that each apple is shown from two
different viewpoints.
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Table A.1: Doppelmontagne
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Table A.2: Feigenapfel
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Table A.3: Fränkischer Schmeerapfel
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Table A.4: Fürstenapfel
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Table A.5: Gedrückter Hartig
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Table A.6: Gestreifter Sommercalvill
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Table A.7: Gestreifter Winter Erdbeerapfel
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Table A.8: Grosse Rothe Pilgrim
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Table A.9: Grosser Pipping
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Table A.10: Grüne Reinette
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Table A.11: Grüne Zwetsche
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Table A.12: Italienischer Weißer Rosmarienapfel



178 APPENDIX A. BERTUCH-COLLECTION

Table A.13: Neuyorker Reinette
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Table A.14: Rother Fenchelapfel
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Table A.15: Rother Herbstcalville
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Table A.16: Rother Stettiner
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Table A.17: Rother Taubenapfel
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Table A.18: Rother Wintercalville
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Table A.19: Schwarzer Borsdorferapfel
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Table A.20: Sommer Zuckerapfel
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Table A.21: Veilchenapfel
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Table A.22: Weiße Herbstkalville
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Table A.23: Weißer Maatapfel
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Table A.24: Weisser Sommercalvil
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Table A.25: Weisser Winterkalvill
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Table A.26: Zwei Jahre dauernde Renette
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Table A.27: Zwiebelborsdorferapfel
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Queries and reference sets

The six queries of the evaluation scenario described in chapter 5 are given on
the following pages together with the corresponding reference sets; the numbers
of the fruits are those given in Table 5.1, while their order corresponds to the
order in the result set of the qualitative approach. On the left in each case is
the original sketch, while the right-hand part of each figure shows the polygonal
approximation. As in the Bertuch-collection (Appendix A), the maximal error
between the original contour and the polygonal shape is 5 pixels. The qualitative
matrix of each polygon is given on the following page.
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Figure B.1: The first query

Table B.1: The first sketch and its precision and recall

Fruit Precision Precision Precision Recall
No. optimal non-optimal quantitative
7 I 1.00 1.00 0.10 0.14
1 I 1.00 1.00 0.15 0.28
20 I 0.60 0.60 0.21 0.42
21 I 0.66 0.28 0.18 0.57
21 II 0.71 0.33 0.18 0.71
25 I 0.75 0.33 0.17 0.85
18 I 0.35 0.30 0.13 1.00



195

Figure B.2: Qualitative matrix of query one
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Figure B.3: The second query

Table B.2: The second sketch and its precision and recall

Fruit Precision Precision Precision Recall
No. optimal non-optimal quantitative
8 II 1.00 1.00 0.16 0.10
12 I 1.00 1.00 0.15 0.20
15 I 1.00 1.00 0.20 0.30
12 II 1.00 0.57 0.21 0.40
8 I 0.62 0.50 0.23 0.50

15 II 0.66 0.50 0.26 0.60
17 I 0.70 0.53 0.24 0.70
17 II 0.72 0.57 0.22 0.80
22 I 0.75 0.50 0.23 0.90
22 II 0.76 0.52 0.24 1.00
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Figure B.4: Qualitative matrix of query two
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Figure B.5: The third query

Table B.3: The third sketch and its precision and recall

Fruit Precision Precision Precision Recall
No. optimal non-optimal quantitative
3 I 0.25 0.25 0.50 0.07
7 II 0.40 0.40 0.50 0.14
8 I 0.50 0.50 0.50 0.21

15 II 0.57 0.50 0.19 0.28
17 I 0.62 0.55 0.22 0.35
17 II 0.66 0.60 0.25 0.42
22 I 0.70 0.50 0.24 0.50
22 II 0.72 0.53 0.26 0.57
5 I 0.50 0.50 0.23 0.64
5 II 0.52 0.52 0.23 0.71
12 I 0.45 0.40 0.25 0.78
12 II 0.48 0.42 0.24 0.85
15 I 0.50 0.44 0.25 0.92
7 I 0.46 0.46 0.25 1.00
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Figure B.6: Qualitative matrix of query three
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Figure B.7: The fourth query

Table B.4: The fourth sketch and its precision and recall

Fruit Precision Precision Precision Recall
No. optimal non-optimal quantitative
8 II 1.00 1.00 0.25 0.09
12 I 1.00 1.00 0.10 0.18
15 I 1.00 1.00 0.14 0.27
11 I 1.00 0.80 0.13 0.36
11 II 1.00 0.83 0.15 0.45
12 II 1.00 0.85 0.17 0.54
15 II 0.87 0.58 0.17 0.63
17 I 0.88 0.61 0.17 0.72
17 II 0.90 0.64 0.19 0.81
22 I 0.90 0.55 0.20 0.90
22 II 0.91 0.57 0.22 1.00
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Figure B.8: Qualitative matrix of query four
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Figure B.9: The fifth query

Table B.5: The fifth sketch and its precision and recall

Fruit Precision Precision Precision Recall
No. optimal non-optimal quantitative
13 I 1.00 0.20 1.00 0.16
19 I 1.00 0.33 0.40 0.33
20 I 0.42 0.42 0.42 0.50
14 II 0.50 0.44 0.12 0.66
19 II 0.41 0.31 0.10 0.83
24 I 0.46 0.35 0.11 1.00
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Figure B.10: Qualitative matrix of query five
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Figure B.11: Qualitative matrix of query five - continued
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Figure B.12: The sixth query

Table B.6: The sixth sketch and its precision and recall

Fruit Precision Precision Precision Recall
No. optimal non-optimal quantitative
3 I 1.00 1.00 0.20 0.12
7 II 1.00 1.00 0.25 0.25
8 I 1.00 1.00 0.33 0.37

15 II 1.00 0.80 0.17 0.50
22 I 1.00 0.45 0.16 0.62
22 II 1.00 0.50 0.14 0.75
8 II 0.41 0.41 0.14 0.87
19 II 0.40 0.40 0.15 1.00
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Figure B.13: Qualitative matrix of query six



207

Figure B.14: Qualitative matrix of query six - continued
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